
Python数据分析与可视化专栏(语法+应用)
文章平均质量分 52
本专栏从最基础的python数据可视化开始,逐渐向复杂一些的数据可视化和数据分析前进,我也是小白一个~
简时刻
Fake it until you make it.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python数据分析——100个Pandas常用函数总结
目录1. 统计汇总函数2. 数据清洗函数3. 数据筛选函数4. 绘图与元素级运算函数5. 时间序列函数6. 其它函数1. 统计汇总函数 函数 含义 min() 计算最小值 max() 计算最大值 sum() 求和 mean() 计算平均值 c...原创 2021-09-08 10:31:40 · 1098 阅读 · 0 评论 -
2020年Python数据分析学习笔记之数据结构(一)
课程目标:1、熟练掌握python语法和常用数据结构;2、熟练掌握数据分析相关库的运用;3、对数据分析相关流程和常用方法比较了解;4、能够完成数据分析相关工作。Python数据分析基础:1、Python使用入门:Python3安装、基本操作使用和语法;2、Python基本运用:数据类型、数据结构和控制语句(if、else和循环语句等);3、Python进阶运用:函数编写、json结构数据解析、字符串处理和高级函数的运用;4、Python数据分析常用库:介绍数据分析常用库,原创 2020-05-27 16:10:41 · 640 阅读 · 0 评论 -
2020年Python数据分析学习笔记之控制语句(二)
目录一、条件语句二、循环语句三、其它语句一、条件语句二、循环语句三、其它语句原创 2020-05-29 18:56:33 · 339 阅读 · 0 评论 -
2020年Python数据分析学习笔记之函数讲解(三)
1、函数编写函数定义:将一些语句集合在一起,使其能够反复在程序中运行。使用函数的意义:提高编程效率,避免大量重复的工作。内置函数:可以直接调用的函数。第三方模块相关的函数:按一定的规范自己编写的程序段。自定义函数:按一定的规范自己编写的程序段。int(10) # 整数10str(10) # 字符串函数a = list((1, 2, 3, 4)) # 创建列表max(a) # 计算最大值min(a) # 计算最小值round(2.64333534原创 2020-05-30 11:51:05 · 1037 阅读 · 0 评论 -
2020年Python数据分析学习笔记之Numpy库的运用(四)
1、Numpy的基础用法(1)数组的创建和属性# 数组的创建import numpy as np # 导入库arr1 = np.array([1,2,3,4,5]) # 创建数组# print(arr1)arr2 = np.array([2,3,5,7], dtype='str') # 设置数组的数据类型dtype()# print(arr2)# 二维数组的创建arr3 = np.arange(0,20,2)# print(arr3)原创 2020-05-30 21:01:37 · 1139 阅读 · 1 评论 -
2020年Python数据分析学习笔记之Pandas数据获取与保存(五)
1、数据读取(如果读取的是excel文件,则只需将csv换成excel即可,相关参数与csv参数使用相同)import osimport pandas as pdprint(os.getcwd()) # 路径读取# >>> F:\Python\自学部分# 读取文件df = pd.read_csv('预测结果.csv',encoding='utf-8', nrows=10) # nrows=10 只读取前10行数据 # 如果读取的是ex...原创 2020-06-17 17:55:32 · 1527 阅读 · 1 评论 -
2020年Python数据分析学习笔记之Pandas常用数据结构(六)
一、Pandas基础操作1、Pandas常用数据结构2、数据获取与保存3、数据筛选原创 2020-06-16 20:30:55 · 361 阅读 · 0 评论 -
2020年Python数据分析学习笔记之Pandas数据筛选、条件查询(七)
1、数据筛选原创 2020-07-25 16:18:12 · 1211 阅读 · 1 评论 -
Python数据分析方法技巧篇
一、 数据分析流程二、数据获取方式1、开放数据集科研数据共享 数据算法竞赛 政府公司分享 个人分享(论文、论坛、博客)2、网站爬虫建立网站连接——爬取网页/API——分析返回结果——抽取所需信息’...原创 2021-05-21 00:06:07 · 277 阅读 · 0 评论 -
1 python数据分析基础——xlwings模块与pandas模块的交互
模块与模块之间是可以交互的。例如,用pandas模块创建数据表格,再用xlwings模块将表格写入工作簿。具体代码如下:原创 2021-05-30 23:59:35 · 4088 阅读 · 0 评论 -
2 python数据分析基础——xlwings模块与Matplotlib模块的交互
# 导入库import xlwings as xwimport matplotlib.pyplot as plt# 设置绘图窗口figure = plt.figure()# 设置绘图数据x = [1, 2, 3, 4, 5]y = [2, 4, 6, 8, 10]plt.plot(x, y)# 将绘制的图表写入工作簿app = xw.App(visible = False)workbook = app.books.add()worksheet = workboo...原创 2021-05-31 00:10:29 · 723 阅读 · 0 评论 -
3 python数据分析基础——批量处理工作簿和工作表
一、批量新建并保存工作簿原创 2021-05-31 10:05:18 · 2543 阅读 · 2 评论 -
4 python数据分析基础——批量处理行、列和单元格
一、 精确调整多个工作簿的行高和列宽二、批量更改多个工作簿的数据格式三、批量替换多个工作簿的行数据四、原创 2021-05-31 19:45:21 · 2564 阅读 · 0 评论 -
5 python数据分析基础——批量进行数据分析(一)
一、批量升序排序一个工作簿中的所有工作表二、筛选一个工作簿中的所有工作表数据三、对多个工作簿中的工作表分别进行分类汇总对一个工作簿中的所有工作表分别求和原创 2021-05-31 22:01:09 · 2206 阅读 · 2 评论 -
6 python数据分析基础——批量进行数据分析(二)
一、使用相关系数判断数据的相关性二、使用方差分析对比数据的差异三、使用描述统计和直方图制定目标四、原创 2021-06-01 19:59:44 · 1076 阅读 · 3 评论 -
Matplotlib库介绍
Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表,可根据数据集(DataFrame,Series)自行定义x,y轴,绘制图形(线形图,柱状图,直方图,密度图,散布图等等),能够解决大部分的需要。原创 2021-06-07 15:24:13 · 25893 阅读 · 3 评论 -
1 使用matplotlib的python数据可视化——简单图表的绘制(线形图、柱形图、饼图、条形图、散点图和子图)
线形图import matplotlib.pyplot as pltfrom matplotlib.font_manager import FontPropertiesfont_set = FontProperties(fname = r"c:\windows\fonts\msyh.ttc",size=14) # 设置字体plt.title("数据可视化",fontproperties=font_set) # 图标标题plt.xlabel("X轴方向",fontpropertie.原创 2021-05-27 15:18:50 · 9246 阅读 · 1 评论 -
2 基于matplotlib的python数据可视化——导入Excel数据制作简单的图表(散点图、柱形图、面积图、折线图)
其实,这篇文章的四种简单的图表很多代码都是一样的,不一样的只有在更换图表类型那一行代码。比如绘制散点图使用代码:plt.scatter();绘制柱形图使用代码:plt.bar();绘制面积图使用代码:plt.stackplot();绘制折线图使用代码:plt.plot()。只需要调整一行代码就可以显示不同类型的图表。不信的话,请自己看看这四个实例代码。原创 2021-05-29 18:30:13 · 10388 阅读 · 3 评论 -
3 基于matplotlib的python数据可视化——导入Excel数据绘制组合图表
目录1、制作双折线图2、组合图表制作3、为组合图表添加并设置次坐标轴原创 2021-05-30 00:36:21 · 12308 阅读 · 6 评论 -
4 基于matplotlib的python数据可视化——导入Excel数据批量制作柱形图
不同类型的图表有不同的功能。柱形图主要用于对比数据,折线图主要用于展示数据变化的趋势,散点图主要用于判断数据的相关性。一、批量制作图表原创 2021-05-30 14:07:20 · 1651 阅读 · 3 评论 -
5基于matplotlib的python数据可视化——导入Excel数据制作折线图
不同类型的图表有不同的功能。柱形图主要用于对比数据,折线图主要用于展示数据变化的趋势,散点图主要用于判断数据的相关性。原创 2021-05-30 14:08:27 · 6503 阅读 · 3 评论 -
6 基于matplotlib的python数据可视化——导入Excel数据制作散点图
为了直观地呈现各个变量之间的相关性,可以使用变量数据制作散点图,来分析我们的数据是正相关还是负相关。一、制作散点图判断两组数据的相关性并添加趋势线汽车速度与刹车距离表:https://download.csdn.net/download/weixin_44940488/19230084import pandas as pdimport matplotlib.pyplot as pltimport xlwings as xwfrom sklearn import linear...原创 2021-05-30 14:39:55 · 6842 阅读 · 0 评论 -
7 基于matplotlib的python数据可视化——导入Excel数据制作饼图
饼图常用于展示同一级别中不同类别的占比情况。在python中使用matplotlib模块中的pie()函数可以制作饼图。原创 2021-05-30 15:45:03 · 9245 阅读 · 4 评论 -
8 基于matplotlib的python数据可视化——导入Excel数据制作雷达图
雷达图可以同时比较和分析多个指标。雷达图数据下载:原创 2021-05-30 16:38:50 · 2578 阅读 · 0 评论 -
9 基于matplotlib的python数据可视化——导入Excel数据制作温度计图
温度计图是在柱形图的基础上制作而成的一种图像,常用于展示目标的达成情况。温度计图数据下载:https://download.csdn.net/download/weixin_44940488/19231427原创 2021-05-30 17:11:04 · 738 阅读 · 0 评论 -
实际运用1:正弦和余弦的动画图像生成(基于matplotlib的python数据可视化)
目录1. 正弦动画图像生成2. 余弦动画图像生成1. 正弦动画图像生成# coding:utf8from matplotlib import pyplot as pltfrom matplotlib import animationimport numpy as npfig, ax = plt.subplots()x = np.arange(0, 2*np.pi, 0.01)line, = ax.plot(x, np.sin(x))def animate(i): ...原创 2021-06-27 16:15:59 · 2134 阅读 · 0 评论 -
实际应用2: sin(2 * π * x)函数绘制(基于matplotlib的python数据可视化)
代码实例运行结果原创 2021-06-20 10:05:34 · 2098 阅读 · 0 评论 -
实际应用3: 图书数据可视化分析(基于matplotlib的python数据可视化)
代码实例运行结果原创 2021-06-20 10:15:02 · 3912 阅读 · 0 评论 -
pyecharts库介绍
1、pyechartsØEcharts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。Øpyecharts 分为 v0.5.X 和 v1 两个大版本,v0.5.X 和 v1 间不兼容,v1 是一个全新的版本。(使用版本为v1)ØØ官网:https://www.echartsjs.com/index.htmlØPyecharts.原创 2021-06-08 14:07:29 · 4757 阅读 · 0 评论 -
1 基于pyecharts的python数据可视化——柱状图绘制
Echarts是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts诞生了。...原创 2021-06-02 13:20:48 · 2291 阅读 · 1 评论 -
2 基于pyecharts的python数据可视化——饼图绘制
饼图常用于表现不同类别的占比情况。使用Pie方法可以绘制饼图。原创 2021-06-02 14:27:31 · 7961 阅读 · 1 评论 -
3 基于pyecharts的python数据可视化——漏斗图绘制
实例代码:运行结果:原创 2021-06-02 15:11:40 · 825 阅读 · 0 评论 -
4 基于pyecharts的python数据可视化——散点图和折线图的绘制
实例代码运行结果原创 2021-06-02 15:27:33 · 2906 阅读 · 2 评论 -
5 基于pyecharts的python数据可视化——K线图绘制
实例代码from pyecharts import options as optsfrom pyecharts.charts import Kline# 数据设置data = [ [2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38], [2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8]原创 2021-06-02 23:27:48 · 1079 阅读 · 0 评论 -
6 基于pyecharts的python数据可视化——仪表盘图绘制
实例代码运行结果原创 2021-06-02 23:49:01 · 1408 阅读 · 0 评论 -
7 基于pyecharts的python数据可视化——组合型图表绘制
实例代码运行结果原创 2021-06-02 23:58:11 · 1337 阅读 · 1 评论 -
8 基于pyecharts的python数据可视化——地理图表的绘制
1、例子:百度迁徙 百度地图春节人口迁徙大数据(简称百度迁徙),是百度在2014年春运期间推出的一项技术项目。百度迁徙利用大数据,对其拥有的LBS(基于地理位置的服务)大数据进行计算分析,采用的可视化呈现方式,动态、即时、直观地展现中国春节前后人口大迁徙的轨迹与特征。网址:...原创 2021-06-08 18:01:47 · 2882 阅读 · 3 评论 -
实际应用1:分析各类APP的下载量(pyecharts数据可视化)
前面7篇博客分别介绍了使用pyecharts库来绘制柱状图、饼图、K线图、散点图、仪表盘图、玫瑰图、漏斗图以及组合图表的绘制方法。那么,通过前面几篇的学习原创 2021-06-03 12:59:38 · 2677 阅读 · 2 评论 -
实际应用2:sin(x)和cos(x)函数绘制(pyecharts数据可视化)
实例代码:运行结果:原创 2021-06-08 15:32:57 · 1656 阅读 · 0 评论 -
python数据可视化——英雄联盟人物战力分析(条形图)
案例数据文件下载:https://download.csdn.net/download/weixin_44940488/19129617实例代码:from pyecharts.charts import Bar # 生成图标,数据可视化import xlrd # 读取分离 读:xlrd(read) 写:xlwt(write)from pyecharts import options as optsdata = xlrd..原创 2021-05-27 16:56:19 · 1537 阅读 · 0 评论