slam学习之线性代数--行列式

行列式

  • 行列式定义
    行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。当然,如果行列式中含有未知数,那么行列式就是一个多项式。它本质上代表一个数值,这点请与矩阵区别开来。矩阵只是一个数表,行列式还要对这个数表按照规则进一步计算,最终得到一个实数、复数或者多项式。

概括说来有两个解释:

  • 一个解释是行列式就是行列式中的行或列向量所构成的超平行多面体的有向面积或有向体积;

  • 另一个解释是矩阵A的行列式detA就是线性变换A下的图形面积或体积的伸缩因子。

这两个几何解释一个是静态的体积概念,一个是动态的变换比例概念。但具有相同的几何本质,因为矩阵A表示的(矩阵向量所构成的)几何图形相对于单位矩阵E的所表示的单位面积或体积(即正方形或正方体或超立方体的容积等于1)的几何图形而言,伸缩因子本身就是矩阵矩阵A表示的几何图形的面积或体积,也就是矩阵A的行列式。

  • 行列式>1,放大图形
  • 行列式=1,图形不变
  • 0<行列式<1,图形变小
  • 行列式=0,矩阵不可逆
  • 行列式<0,改变基的左右手法则

行列式计算

在这里插入图片描述

引入余子式在这里插入图片描述在这里插入图片描述

和号

在这里插入图片描述在这里插入图片描述

行列式性质

  • 行列式A中某行(或列)用同一数k乘,其结果等于kA。
    在这里插入图片描述
    推论:若某一行元素全为0,则D=0
  • 行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
    在这里插入图片描述
  • 若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
    在这里插入图片描述
  • 行列式A中两行(或列)互换,其结果等于-A。
    在这里插入图片描述
    推论:两行相同,D=0
    :两行成比例,D=0
  • 把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
    在这里插入图片描述
三维空间的刚体运动

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值