- 博客(20)
- 收藏
- 关注
原创 提示词工程
提示词工程,或称Prompt Engineering,是一种专门针对大语言模型进行优化的方法。它的目标是通过设计和调整输入的提示词(prompt),来引导这些模型生成更准确、更有针对性的输出文本。本文介绍了提示词工程的概念、提示词的基本元素、提示词设计的通用技巧和部分常用的提示词技术。
2025-07-18 15:19:48
906
原创 MCP笔记:UVX和NPX
mcp server大多使用python和typescript编写,对应的启动命令分别为uvx和npx,下面将分别具体介绍一下这两种指令。熟悉指令的基础知识,有利于我们安装和调试mcp server
2025-06-09 21:30:46
2826
原创 MCP笔记:介绍和原理
2024年11月底,Anthropic公司发布了全新的MCP(Model Context Protocol)协议,即模型上下文协议 。该协议是一种开放协议,支持大模型应用程序与外部数据源和工具之间的无缝集成。无论您是构建 AI 驱动的 IDE、增强聊天界面,还是创建自定义 AI 工作流,MCP 都提供了一种标准化的方式来连接 LLMs 需要的上下文。
2025-06-08 16:29:52
1232
原创 Python异步编程-协程
在使用多个爬虫脚本进行数据爬取和调用大语言模型返回结果的场景中,涉及到大量的网络IO操作。协程能够让网络IO操作并发执行,极大地提升程序的运行效率。在智能体相关的开源项目中,我们也可以经常看到协程的身影。
2025-06-07 21:14:17
1421
2
原创 LangGraph中使用Reflection机制填坑
我在LangGraph框架搭建的智能体中引入了Reflection机制,程序运行报错:Recursion Error原因是图中的某些节点之间循环次数过多超过了图计算步数的限制,例如审查一直达不到标准,不断地审查-修改-审查。下面将简单介绍一下LangGraph的递归限制和如何控制图执行过程中节点之间的循环次数,避免陷入太多的循环。
2025-05-26 21:53:27
430
原创 万字解读开源项目源码:gpt-researcher
万字解读开源项目源码:gpt-researcher。GPT Researcher是一个自主代理,旨在对各种任务进行全面的在线研究。该代理可以生成详细、真实、且客观的研究报告,并提供自定义选项,以便用户专注于相关资源、提纲和经验教训。受"Plan-and-Solve"和"RAG"论文的启发,GPT Researcher解决了速度、确定性和可靠性问题,通过并行代理工作(而非同步操作)提供更稳定的性能和更高的速度。
2025-05-12 16:36:46
2287
原创 神经网络-Transformer
transformer架构主要由输入部分(输入序列和目标序列的向量表示与位置编码相加)、N层编码器、N层解码器以及输出部分(输出线性层与softmax层)四大部分组成。
2025-04-30 19:22:22
2478
原创 大模型:Reflection机制
大语言模型生成的答案具有随机性,如何尽可能地提升回答的质量是一个关键的问题。我们希望大模型能够像人类一样,具备自我反思的能力,从错误中学习,不断优化自身的行为和决策。
2025-04-08 14:22:56
947
原创 Agent开发框架-LangGraph
LangGraph 是一个用于构建有状态和多角色的 LLM Apps 的开源库,常用于创建单Agent和多Agent的工作流。
2025-03-13 10:35:31
904
原创 Docker-Compose容器编排技术
Docker Compose是Docker官方提供的一个工具,用于管理多个Docker容器的应用程序。使用Docker Compose可以定义和运行多个容器,从而组成一个完整的应用程序,并且可以方便地在不同的环境中部署和运行应用程序。
2025-03-10 19:47:01
594
原创 Docker笔记
Docker是一个开源的应用容器引擎,让开发者可以以统一的方式打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何安装了docker引擎的服务器上(包括流行的Linux、windows),也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。最重要的是,他们不依赖于任何语言、框架包括系统。
2025-03-08 14:50:17
995
原创 Linux常用命令总结
在大型互联网公司中,你一定不可避免地跟服务器打交道,熟练使用linux命令在服务器上完成各项工作非常重要,大家在找实习或者正式工作之前一定要重视linux命令的学习。下面是个人对linux常用命令的总结。
2025-03-03 15:09:35
538
原创 维基中文百科词条爬取实践
维基百科,是一个自由内容、公开编辑且多语言的网络百科全书。它允许任何用户对其中的内容进行创建、修改和完善。作为维基百科的中文分支,维基中文百科致力于提供全面、准确的中文知识信息。(可能需要魔法)虽然维基中文百科致力于提供准确的知识信息,但由于其开放编辑的特性,部分信息可能存在不准确或偏见的情况。因此,在使用时请务必进行甄别和核实。若用于训练高质量模型的数据集,需要进行数据鉴别和清洗。
2025-02-21 15:05:37
937
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人