题目
知识点
- 方法1:回溯法
- 方法2:记忆化搜索
思路
回溯法
- 首先对于题目是明确说明没有有向无环图的,因此我们不需要设置数组去记录经过的节点去避免进入环的情况,因此我们只需要递归访问当前节点访问它能到达的节点,直到终点结束,记录下结果。
动态规划
-
对于很多情况下的路只要走过一遍,那么我们可以路径记录下来,以
[[3,1],[4,6,7,2,5],[4,6,3],[6,4],[7,6,5],[6],[7],[]]
为例(其中的1个样例),结果如下:[[0,3,6,7],[0,3,4,7],[0,3,4,6,7],[0,3,4,5,6,7],[0,1,4,7],[0,1,4,6,7],[0,1,4,5,6,7],[0,1,6,7],[0,1,7],[0,1,2,4,7],[0,1,2,4,6,7],[0,1,2,4,5,6,7],[0,1,2,6,7],[0,1,2,3,6,7],[0,1,2,3,4,7],[0,1,2,3,4,6,7],[0,1,2,3,4,5,6,7],[0,1,5,6,7]]
我们可以看到,其中
[0,3,4,7],[0,3,4,6,7],[0,3,4,5,6,7]
都访问到了4以后的节点,并得到的了所有从4出发到终点的所有路径,即[4,7]、[4,6,7]、[4,5,6,7]
。而从1节点开始也可以走到4,[0,1,4,7],[0,1,4,6,7],[0,1,4,5,6,7]
,这时候我们不需要从4开始再去递归访问过的结果,直接返回以4开始所有到终点的路径即可。 -
总体思路如下,对于当前节点
i
,for
循环找到下一个节点j
,用vector<vector<int>> all_routes
记录该点出发所有能到达的路径并用于最后返回,用map<int, vector<vector<int>>> vis
记忆化所有从int
开始能到达终点的路径:-
如果该节点已经从其他路径访问过,直接返回从该节点出发到终点的路径, 然后加上当前节点
i
,得到从i
出发到j
后所有能到达的路径,并保存到vis[i]中(记忆化)(Line 14-21)。比如上面例子在访问4开始到达的所有节点以后
vis[4]
中就记录了[4,7]、[4,6,7]、[4,5,6,7]
,直接加上i
后([i,4,7]、[i,4,6,7]、[i,4,5,6,7]
),保存在vis[i]中,下次访问到i直接就可以返回结果(PS:i相邻节点j到达的都要保存,并不是只有上面的4
,如果相邻还有5
,我们还要把5能到达的都放入vis[i]
中) -
如果该节点没有从其他路径访问过,那我们直接
dfs(graph, next)
得到以next为下一个节点所能到达终点的所有路径。并加上当前节点i,保存在vis[i]中(Line 24-30) 。
-
代码
回溯法代码
class Solution {
public:
vector <vector <int>> res;
int ed;
void dfs(vector<vector<int>>& graph