- 博客(33)
- 问答 (1)
- 收藏
- 关注
原创 避坑指南:为何 Docker Desktop 中的 docker 能用localhost?而 VMware 中的 docker 必须用IP?
摘要:在Windows环境中访问Docker容器时,连接方式取决于Docker的运行位置。若使用Docker Desktop,容器通过WSL2/Hyper-V虚拟机运行,但可通过localhost直接访问。若Docker运行在独立虚拟机(如VMware)中,则需通过虚拟机IP访问容器。两种场景下,端口映射机制相同,但宿主机的定义不同:Docker Desktop将Windows视为宿主机,而独立虚拟机方案中虚拟机才是宿主机。
2025-07-23 20:00:00
340
原创 避坑指南:Windows 11中 Docker 数据卷的存放位置
本文探讨了Docker在Windows/WSL2环境下数据卷存储路径显示不一致的问题。通过PowerShell的docker volume inspect命令获取的Mountpoint路径(如/var/lib/docker/volumes/html/_data)与WSL2中实际路径(\\wsl.localhost\docker-desktop\...)存在差异。这种差异源于Docker引擎基于Linux视角报告路径,而Windows显示的是经过WSL2映射后的文件系统路径,并非真正的不一致。文章揭示了跨平台
2025-07-23 09:32:24
178
原创 论文解读:End-to-End Human Object Interaction Detection with HOI Transformer
本文提出HOI Transformer以端到端的方式解决人物交互检测目前的方法要么将HOI任务解耦为目标检测和交互分类两个stage,要么引入surrogate interaction问题。本文提出的HOI Transformer消除了许多需要手工设计的组件,简化了HOI pipeline,它从全局图像上下文中推理object与human的关系,并直接并行预测HOI instances。此外,本文引入了一个,以统一的方式强制进行HOI预测。
2025-07-22 14:00:00
537
原创 论文解读:ERNet: An Efficient and Reliable Human-Object Interaction Detection Network
本文提出ERNet,一种端到端训练的Conv-Transformer网络,用于解决现有HOI检测器存在的训练效率低和预测不确定性问题。该模型采用多尺度可变形注意力机制捕获重要特征,提出检测注意力模块生成实例和交互token,并通过预检测生成初始区域和向量建议。模型包含实例分支和交互分支,分别预测对象类别、边界框和语义嵌入,以及交互类别、向量和语义特征。特别地,模型在分类头引入不确定性估计框架量化预测可靠性。实验表明,该方法在HOI检测任务上取得显著改进,有效降低了模型不确定性带来的错误预测。
2025-07-21 11:00:00
779
原创 论文解读:Reformulating HOI Detection as Adaptive Set Prediction
本文提出AS-Net,将HOI检测重新定义为自适应集合预测问题,采用单阶段双分支框架。创新点包括:1)通过Transformer将可训练交互查询映射到预测集合,利用多头注意力聚合全局特征;2)设计实例感知注意力模块,从实例分支提取有用特征指导交互识别;3)引入语义嵌入约束,拉近同类推远异类特征。该工作通过解耦实例与交互识别实现高效匹配,在CVPR2021发表,代码已开源。方法亮点明确,特别是特征交互与匹配策略值得深入探究。
2025-07-20 18:24:17
149
原创 论文解读:Rethinking vision transformer through human–object interaction detection
本文提出R3ViT模型用于人体-物体交互检测(HOI),通过简单修改标准ViT架构实现高效关系推理。核心创新是将CLS token替换为三个语义载体token([HUM],[OBJ],[INT]),并采用二分图匹配损失。实验表明,RSC tokens仅需充当信息桥梁,其参数学习质量不影响最终性能。该单阶段方法保留了ViT和集合预测的优势,但存在注意力权重分布均匀和多尺度特征不敏感的缺陷。作者建议未来可借鉴DeformableDETR的稀疏空间采样和多尺度特征学习方法进行改进。
2025-07-20 18:19:44
311
原创 2026届八股文:计算机网络高频重点面试题
本文系统梳理了计算机网络核心知识点,涵盖OSI七层模型/TCP/IP四层模型、HTTP/HTTPS协议簇、TCP/UDP传输层协议、IP网络层协议等核心内容。重点解析了TCP三次握手/四次挥手、HTTP请求全过程、HTTPS加密机制、DNS解析流程等关键技术原理,对比了WebSocket与HTTP、IPv4与IPv6等协议差异,并详细探讨了SYN Flood、DDoS、XSS等网络安全问题及防御策略。全文采用问答形式,结构化呈现网络协议栈各层核心概念、工作机制及典型应用场景,是构建完整计算机网络知识体系的实
2024-08-21 21:13:03
1743
1
原创 MySQL命令行输入密码后闪退解决方案
使用MySQL8.0的Command,输入密码后闪退,但是如果不输入密码直接回车,却能直接进入MySQL环境;但是均未能解决我的问题。如果有尝试过常见方案但无效的友友,可以试一下本文的方法。原因分析:出现闪退的可能原因是密码错误,但是我明明在安装的时候设置的密码就是这个密码,为什么还会错误呢?某宝大神解答说可能是由于MySQL加密方式导致了安装时虽然设置的密码是123456,但是MySQL存储的密码却不是123456,咱也没学过密码学,咱也不懂。上面的第三条博客有类似的解决方案,可以参考一下。
2024-02-18 18:57:26
4400
8
原创 PyCharm2023.3.2配置conda环境
重点在于Path to conda这一步,需要找到conda.bat这个文件,PyCharm才能识别出现有的conda环境。
2024-02-12 13:06:10
1122
1
原创 【解决方案】TypeError: unhashable type: ‘list‘
今天在测试代码的时候单独摘出来了一段想看看输出结果,结果发现报错TypeError: unhashable type: 'list',找了半天原因,是因为map(function, iter1,...)函数会把输入的可迭代序列中的元素一个一个地传入function,而不是直接将整个iter传进去,就类似于加了一层for循环。根本原因就是map函数是将iter中的元素一个一个传进function的,而不是一下将整个iter传进去。
2023-04-20 17:06:03
753
原创 【HuggingFace】Transformers-BertAttention逐行代码解析
本文基于Hugging Face的2.6.0版本Transformers包中的self-attention实现进行解析,不同版本间略有差异,但无伤大雅。
2023-04-14 15:58:55
1486
2
原创 【CVPR 2023 论文解读】TriDet: Temporal Action Detection with Relative Boundary Modeling
TriDet: Temporal Action Detection with Relative Boundary Modeling
2023-04-04 19:32:01
3175
1
原创 【ACM MM 2022 论文解读】End-to-End Video Object Detection with Spatial-Temporal Transformers
本文提出了第一个基于spatial-temporal Transformer的端到端视频目标检测器TransVOD。简化当前VOD pipeline,有效地消除了许多手工制作的特征聚合组件,如光流模型、relation networks;得益于DETR中object query的设计,本文方法无需使用Seq-NMS等后处理方法。
2023-04-04 12:11:05
2095
1
原创 知识蒸馏:《Distilling the Knowledge in a Neural Network》算法介绍及PyTorch代码实例
知识蒸馏开山之作《Distilling the Knowledge in a Neural Network》算法介绍及PyTorch代码实例
2022-08-02 11:17:26
3010
3
原创 Tricks:Batch Normalization算法原理
《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》是一篇经典文章。关于Batch Normaliation,这个初学者不太好懂,这里做一下总结归纳。
2022-07-29 16:38:01
344
原创 随机种子:random.seed()和torch.manual_seed()的使用与不同
设置随机种子random.seed()和torch.manual_seed()
2022-07-25 16:28:56
2311
原创 PyTorch:Hook机制在module层面的解读
通俗来讲,hook的作用就是就是在不改变module定义源码的前提下,获取模型某一层的属性。
2022-07-13 22:16:24
1129
原创 RDV代码笔记-network.py部分(持续更新)
关于RDV模型官方代码的解析,本文仅记录network.py中一些令人困惑的点,不局限于模型构建、数据处理、编程语法等。
2022-07-13 18:30:07
180
原创 Multi-Head Self-Attention里投影矩阵WQ/WK/WV是否共享的问题
刚从李宏毅老师的Transformer出来,弹幕里关于投影矩阵WQ/WK/WV是否共享已经吵翻,这里写一下自己的看法。
2022-07-06 10:44:39
2132
1
原创 FCN网络中IntermediateLayerGetter()类解析
看很多人都说这个类的作用是取出return_layers中所指定的层及其输出,这样其实是比较片面的,在FCN中调用这个class的时候这样解释不通,想了半天才想明白。本篇blog也是以FCN中源码来讲的。 首先来看一下在哪里调用了IntermediateLayerGetter()这个类:def fcn_resnet101(aux, num_classes=21, pretrain_backbone=False): # 'resnet101_imagenet': 'https://d...
2022-05-22 21:08:49
715
5
原创 机器学习-k折交叉验证法(python实现)
看了网上的很多k-fold的程序,发现都是机器学习方面的数据操作,而非文件操作(一位不愿意透露姓名的资深大冤种本着“能花钱就不动脑”的原则还付费了几个程序,全是bug,我真的会谢)。然后自己写了一个k-fold的程序,我的数据集是只有两个labels,并且是yolo格式做的标注,所以程序也是按照yolo的文件格式进行编写的,文件夹路径和picknumbers大家可以自己调。注:picknumbers我没有采用int(),因为可能会产生errors(比如你的数据集规模......
2022-04-23 11:01:53
4832
原创 YOLOv5中autoanchor.py的def metric(k)的r = wh[:, None] / k[None]的理解
None用以添加维度,所有GT的wh[:, None],[N, 2]->[N, 1, 2],所有anchor的wh k[None] [M, 2]->[1, M, 2]r: GT的宽高与anchor的宽高的比值,即h/h_a, w/w_a,r.shape=(N, M, 2),r中元素有可能大于1,也可能小于等于1为什么要添加维度:原来的维度是[N, 2]、[M, 2],无法相除,因为不满足广播机制,但是增加维度后就可以满足了广播原则的条件...
2022-03-12 16:41:40
919
空空如也
RepVGG代码中sgd_optimizer()的作用是什么?
2022-07-30
TA创建的收藏夹 TA关注的收藏夹
TA关注的人