- 博客(4)
- 收藏
- 关注
原创 基于梯度的学习方法应用于文档识别
gradient- based learning applied to document recognition用反向传播算法训练的多层神经网络是基于梯度学习技术成功的最好例子。给定一个合适的网络结构,基于梯度的学习算法可以用最少的预处理来合成一个复杂的决策面,该决策面可以对高纬模式(手写体字符)进行分类。学习数据损失函数:测量正确的或期望的图案输出与系统产生的输出之间的差异。平均损耗函数:训练集的标记示例上的误差的平均值。在一个最简单的设置中,学习的问题在于找到在实践中最小的值;在实际操作中
2021-03-09 19:32:25
505
1
原创 阅读笔记:深度学习入门
《深度学习入门:基于python的理论与实现》第一章 python入门深度学习的框架有:caffe、tensorflow、chainer、theanopython使用的外部库:numpy库:用于数值计算的库,提供高级的数学算法和便利的数组(矩阵)操作方法 matplotlib库:用来画图的库,可将实验结果可视化...
2021-03-02 16:52:04
1627
3
原创 网络结构1——LeNet
网络结构1——LeNet参考文章:gradient- based learning applied to document recognitionLeNet-5算法应用于手写数字识别问题创新点卷积神经网络专门设计用来处理二维形状变化,表现优于其他所有技术。利用反向传播算法训练的多层神经网络构成了一种成功的基于梯度的学习技术,在适当的网络结构下,基于梯度的学习算法可以用来合成一个复杂的曲面,该曲面可以用最少的预处理对高维模式进行分类。 文档识别系统由多个模块组成,包括字段提取、分割识别和语言
2021-01-18 19:38:18
295
原创 网络结构2——AlexNet
网络结构2——AlexNet参考文章:ImageNet classification with deep convolutional neural networks创新点应用卷积神经网络模型。现实环境中的物体具有相当大的可变性,要学习识别他们,有必要使用更大的训练集,从而我们的模型也应该有大量的先验知识来补偿我们没有的所有数据。卷积神经网络模型可以通过改变它们的深度和宽度来控制,而且还可以对图像的本质做出强有力且大部分正确的假设。 编写了高度优化的2D卷积的GPU:将网络分散到两个gpu上。当
2021-01-18 19:37:40
172
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人