自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1053)
  • 收藏
  • 关注

原创 新乡医学院为了这篇柳叶刀子刊论文,卷尽了统计方法

利用真实世界数据,该研究发现,与阿托伐他汀相比,在缺血性卒中或TIA患者中首次使用瑞舒伐他汀可能与更高比例的理想转归(mRS 0)相关,而在卒中复。在入院NIHSS≤3的亚组中,两组间相对比率为1.17(95% CI 1.07–1.28),E值(95%下限CI)为1.62(1.34)。研究设计较为常规,该考虑的都考虑到了,对于观察性研究来说,最主要的就是数据挖掘是准确的,纳排标准明确,主次结局分明,定义明确。观察性研究的数据,往往是有缺失的,这项研究对于不同变量的缺失数据的插补,用了不同的方法。

2025-08-06 11:03:58 159

原创 现在,是该了解 “处理效应异质性“(HTE)的概念与方法的时候了

HTE(治疗效应异质性)的评估在医学文献中变得越来越常见,越来越多的人认识到需要更细化、更以患者为中心的数据,以便能够进行个体化的治疗决策,HTE分析是必不可少的。效应异质性(HTE)评估中,较为成熟的方法如预先设定的亚组分析,另外更具探索性的HTE方法,特别是一系列预测风险建模方法,都是HTE评估的常用方法。在这种情况下,基于全样本观察到的平均效应所做的治疗决策,会低估与该患者相似子样本的平均效应。,在干预效果方面,这些差异可能导致研究人群中观察到的平均效应与个体患者的真实效应相差甚远。

2025-08-05 08:05:06 216

转载 最近,我们捣鼓了一个R语言包,用于全球疾病负担数据库(GBD)的快速统计分析

和团队成员一起,老郑我和同事陈老师一起团队们,搞了一个R语言包(这是我们第一个R语言包,不过马上有第二个包了),用于全球疾病负担数据库(GBD)的分析。目前这个包,目前还没有完全可以使用,过几天把这个包放在GitHib,后面就可以用了,十分方便。全国较大的医学统计服务公众号平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理。,精准捕捉趋势转折点,计算AAPC(平均年度百分比变化)和分段APC,年龄效应、时期效应、队列效应、局部漂移、净漂移。,对未来疾病负担进行科学预测,结果进行可视化。

2025-07-31 08:40:31 68

原创 IF=14.1,浙大学者研究表明,儿童珠心算训练,重塑大脑功能和认知

这解释了为什么训练组孩子的能力个体差异更小。为量化 EF 与数学能力共享的连接架构,我们首先分别识别出两种能力相关的正负行为关联组间功能连接(FC)模式,并在两组中绘制其分布。更有趣的是,在训练组内部,这种大脑活动模式的“同步率”越高,孩子的执行功能和数学能力得分也越高。该发现表明,对于执行功能任务和数学任务,长期AMC训练后儿童的大脑功能连接模式高度相似(重叠度高),而对照组的模式则相对独立。并非简单的技能学习,而是可能在认知结构层面,对儿童大脑产生深刻而持久的积极影响,促进了关键认知能力的协同发展。

2025-07-30 07:55:38 606

转载 GBD公共数据库阿尔兹海默症数据连发两篇一区Top!IF高达11.1

BD 创建了一个独特的平台来比较不同年龄组、性别、国家、地区和时间的疾病、伤害和风险因素的严重程度。对于决策者、卫生部门领导者、研究人员和知情公民来说,GBD 方法提供了一个机会,将其国家的卫生进展与其他国家进行比较,并了解可能避免的健康损失的主要原因,例如高血压、吸烟和家庭空气污染。全因死亡率、死亡原因死亡率、因过早死亡而损失的生命年数 (YLL)、伤残生活年数 (YLD) 以及伤残调整生命年数 (DALY)1.中国学者文章介绍(一)2.中国学者文章介绍(二)3.中国学者文章介绍(三)

2025-07-28 20:59:00 12

原创 方法不是越复杂越好,浙大学者COX回归构建的预测模型发文柳叶刀子刊

在所有患者中,ACLF-1 组术后短期(28 天和 90 天分别为 94.9%和 90.3%)和长期(1 年、3 年和 5 年分别为 87.8%、85.1%和 84.1%)生存率最佳。当两者结果(预测性能)相当的时候,仍然优先选择传统回归(logistics、cox回归),毕竟作为广义线性方程,Cox回归结果更好解释,也更容易应用。结果表明,在推导集中,HALT模型预测1年死亡率的C指数为0.756,高于其他8种模型(C指数0.568–0.638,均P<0.001)。均P < 0.001)。

2025-07-25 07:56:09 713

原创 一键开展中介分析的工具来了

除了操作步骤,还结合文献介绍了结果的解读,如果您也对中介分析感兴趣,欢迎使用风暴平台进行分析!0.05),因为在研究中,当暴露与结局初步发现存在统计学关联时,我们才会进一步探索中介变量。表5的路径分析,其实简单来说,就是暴露,中介,结局分别进行回归分析的结果,大家主要关注。,仍是小白式操作,结果与R语言完全一致,实现了统计分析上"异路同归",分析事半功倍!,在中介关系成立的前提下会报告这个结果,如本示例代表中介效应占比为9.25%。2025版风暴统计平台正式上线,除了各模块的优化升级,推出的全新功能——

2025-07-24 07:55:08 670

转载 确诊!聚焦于某年龄段人群研究为GBD研究真热点

BD 创建了一个独特的平台来比较不同年龄组、性别、国家、地区和时间的疾病、伤害和风险因素的严重程度。对于决策者、卫生部门领导者、研究人员和知情公民来说,GBD 方法提供了一个机会,将其国家的卫生进展与其他国家进行比较,并了解可能避免的健康损失的主要原因,例如高血压、吸烟和家庭空气污染。是迄今为止规模最大、最全面的一项研究,旨在量化不同地区和不同时期的健康损失,从而改善卫生系统并消除差异。1.中国学者文章介绍(一)2.中国学者文章介绍(二)3.中国学者文章介绍(三)4.中国学者文章介绍(四)

2025-07-23 19:30:00 15

原创 SCI一区论文预测模型变量筛选好思路:LASSO与Boruta算法结合

是指从众多变量中选取要包含在特定模型中的那些变量,也就是在完整的变量列表中剔除不相关或冗余的变量,选出合适的变量。是一种基于随机森林的特征选择方法,其核心思想是通过引入人造特征(影子特征)与原始特征进行对比,来判断原始特征的重要性,从而筛选出真正与目标变量相关的特征。分别使用LASSO回归和Boruta方法进行特征筛选,最终仅选取两种方法均识别出的变量,有助于识别重要特征,减少冗余。通过选择非零系数对应的特征,可以筛选出对目标变量有最大预测能力的特征,从而简化模型,提高模型的泛化能力。

2025-07-23 07:58:29 836

原创 Nature迄今最大规模研究显示,每周4天工作制打工人更快乐,但效率不减

在试点前,参与组织会进行工作流程的重组,以提高效率与协作性,随后进行为期六个月的试点实施。早在两年前,“张雪峰公司实行上四休三”就已登上热搜,宣布将实行上二休一,上二休二,周三休息,工资待遇不变,引发关注。“如果员工想保持同样的产出,他们可能会加快工作速度来完成任务,这实际上可能会让他们的身心健康恶化。其中,个人层面的工作时间减少越多,其福祉改善越显著。不过,由于公司是自愿参与试验的,这些结果可能高估了四天工作制在不同公司中的实际效果,试验降低了员工的倦怠感,提高了工作满意度,并改善了他们的身心健康。

2025-07-22 17:04:38 314

转载 一周203篇!NHANES公共数据库发文量遥遥领先 | 周报(6.28~7.4)

由美国疾病控制和预防中心(CDC)负责为国家提供健康统计数据。约10000名参与者被要求在移动检查中心(MEC)参加家庭访谈、随后的身体检查和实验室测试。NHANES计划始于20世纪60年代初,并作为一系列针对不同人口群体或健康主题的调查进行。检查部分包括医疗,牙科和生理测量,以及由训练有素的医务人员进行的实验室测试。自1999年以来,对美国的人口健康状况进行了更为定期的调查。评估美国成人和儿童健康和营养状况的研究计划。美国国家健康和营养检查调查(NHANES)人口统计,社会经济,饮食和健康相关问题。

2025-07-21 20:57:12 16

原创 都是控制混杂,倾向性得分匹配和多因素回归怎么选?

所以,多因素回归的主要目标是在统计模型内部直接调整观测到的混杂因素对结果的影响,从而估计处理(暴露)的独立效应。PSM 的基本原理就是将多个混杂因素的影响通过一个综合的倾向性评分来表示,从而降低了协变量的纬度,减少自变量的个数,避免了高维回归的问题。倾向性得分匹配和多因素回归都是事后控制潜在混杂因素的重要方法,相比而言,倾向性得分匹配方法更复杂。回归控制混杂中,我们有重点关注的焦点因素,不再像影响因素研究,对所有自变量"一视同仁"。首先,混杂偏倚,特别是观察性研究的偏倚,我们常用的方式就是回归分析来处理。

2025-07-21 08:42:18 827

原创 武汉大学学者发文顶刊Nature,中国住院人数因极端高温大幅增加

本研究结果凸显了制定有针对性的气候变化减缓策略的必要性,以减少因城市地理差异、极端温度、不同人群以及碳排放路径差异所造成的不均衡住院风险和经济负担。一个有趣的悖论:对冷敏感度最高的地区往往与热风险最高的地区重合,尤其是西北和西南地区,这表明气候相关的健康挑战是复杂的。虽然老年人的绝对住院率更高,但青少年在每单位温度升高的风险中表现出显著的速率变化。到 2100 年,中国因极端高温导致的额外住院人数可能会大幅增加,同时也可能导致额外住院成本的大幅增加。,呼吸系统疾病表现出明显的热相关风险。

2025-07-18 08:14:01 226

原创 JAMA子刊:整群随机对照研究一种新的随机化方法:协变量约束随机化

采用协变量约束随机化(CCR)设计的CRT,通过在集群层面(即随机化单位)对可能出现的大规模不平衡进行控制,能比简单随机化方法更有效地平衡研究组之间的重要变量。这种不平衡会在分析中引入无法测量的混杂因素。通过在这些重要变量上实现平衡,不仅提高了研究组间的可比性(表面效度),也从统计学上提升了试验的效率(检验效能)并减少了干预效应估计中的偏倚。如果假定集群层面和个体层面变量相关,通过CCR避免在集群层面的严重随机不平衡,也通常能避免在个体层面(即分析单位)出现严重随机不平衡。

2025-07-15 08:35:58 612

原创 IF=23.1!生存分析预测模型,随机生存森林方法比Cox回归更优?

本研究利用2005–2020年间5183例首次接受同种异体造血干细胞移植(allo‑HCT)的骨髓纤维化(MF)患者数据,评估机器学习(ML)模型对移植后总体生存(OS)的预测能力。我觉得呀,当两者结果相当的时候,仍然优先选择Cox回归,作为广义线性方程,Cox回归结果更好解释,也更容易应用。值得注意的是,ML模型将25%的患者划入高风险组,远高于Cox评分的10.1%和CIBMTR模型的8.2%。值得注意的是,ML模型与Cox评分相比,将大批原属中-2风险组的患者重新分配至其他风险组。

2025-07-11 07:51:39 376

原创 “第一篇SCI论文”训练营第2期马上开营,欢迎报名!

追迫式监督,设有专门的指导助教进行监督学习,以防止学员懈怠,中途放弃。免费开放、持续更新、高学术认可度(近 10 年 300 + 篇 IF≥20 论文)。数据下载到加权分析,全流程一站式搞定,不用跑代码,菜单式操作,超级简单快捷。在科研领域,数据获取难、实验周期长、成本高,是许多研究者面临的共同难题。1️⃣以直播/录播形式讲解NHANES数据库、数据下载,统计分析技巧。面向临床、护理、公卫、健康等相关专业的本科生、研究生、医务工作者。手把手带你走完选题、数据处理、统计作图、论文写作到投稿的全流程。

2025-07-10 07:49:42 287

原创 偏态数据怎么做回归?介绍一种合适的方法

最后,将观测分布与反事实分布作图比较。这篇文章作者在讨论部分写到:“虽然这些关联在数值上看似较小,我们的研究仍为现有文献做出补充,提出了一种评估这种异质性关系的方法,并揭示了教育与 HbA1c 的关系在不同教育水平人群中并不一致。图 2 展示了样本中 HbA₁c 的真实观测分布与基于 UQR 估计的“反事实”分布(即假设平均教育年限增加 1 年后 HbA₁c 分布的预测变化)。所以,当你的结局变量是定量的,偏态分布的,不妨加一个无条件分位数回归的方法,不仅能丰富你的研究结果,也能让审稿人眼前一亮。

2025-07-08 09:24:08 919

原创 机器学习预测模型性能差别不大,我首推Logistic回归

基于 LASSO 回归和 Boruta 特征筛选出的4个特征,采用决策树(DT)、随机森林(RF)、极端梯度提升(XGBoost)、k 近邻(KNN)、LightGBM、支持向量机(SVM)和逻辑回归(LR)七种机器学习算法构建并评估了预测模型。而通过logistic回归构建的列线图作为一种强大的临床决策辅助工具,以其直观、易用、全面的特点,为医生们提供了极大的便利。在预测性能没有显著差异,差别不大的情况下,郑老师认为,传统logistic回归的透明度和简单性通常是更负责任和更实用的选择。

2025-07-07 09:52:39 786

原创 预测模型势不可挡,SCI一步到位!郑老师团队1对1R语言指导,欢迎咨询

我们提供专业统计师1对1微信答疑1年,并且所有课程(包括R语言录播课程、临床回顾性数据分析课程、临床预测模型课程)都可以永久回放,随时复习。通过本课程的学习,你将掌握真实世界临床研究和临床预测模型的核心内容,学会用R语言分析数据,并能够运用所学知识进行临床预测模型的构建和验证。郑老师团队开设的1对1答疑指导高级班,性价比高,我们的课程不仅内容丰富,而且价格亲民,让你用少的投入,收获大的回报!”,将带你走进数据分析的新世界,让你的研究之路畅通无阻!的形式,确保你能够在学习过程中得到充分的指导和支持。

2025-07-07 09:52:39 254

原创 P<0.025,你的结果照样没有统计学差异

本系列的第一篇推文,我们讲了讲本研究的临床试验论文的规范性。Bonferroni方法,原理就是进行α分割,将每次检验的显著性水平调整为 α/n,其中n是检验的次数。对于次要结局和亚组分析,未对置信区间进行正式的多重性校正,结论应解读为探索性和产生假设的结果。这些方法也可以看做多重性调整,控制假阳性的统计思维,对于多臂、多结局的研究设计都是适用的。方法,但是我还是蛮喜欢用,实际上临床研究很认可,本文用的也是这种方法。但你得加一句,像本文一样:我的结果是探索性的结果,而不是验证性的。

2025-07-04 11:45:57 555

原创 P<0.025,你的结果照样没有统计学差异

本系列的第一篇推文,我们讲了讲本研究的临床试验论文的规范性。Bonferroni方法,原理就是进行α分割,将每次检验的显著性水平调整为 α/n,其中n是检验的次数。对于次要结局和亚组分析,未对置信区间进行正式的多重性校正,结论应解读为探索性和产生假设的结果。这些方法也可以看做多重性调整,控制假阳性的统计思维,对于多臂、多结局的研究设计都是适用的。方法,但是我还是蛮喜欢用,实际上临床研究很认可,本文用的也是这种方法。但你得加一句,像本文一样:我的结果是探索性的结果,而不是验证性的。

2025-07-04 11:45:57 859

原创 P<0.025,你的结果照样没有统计学差异

本系列的第一篇推文,我们讲了讲本研究的临床试验论文的规范性。Bonferroni方法,原理就是进行α分割,将每次检验的显著性水平调整为 α/n,其中n是检验的次数。对于次要结局和亚组分析,未对置信区间进行正式的多重性校正,结论应解读为探索性和产生假设的结果。这些方法也可以看做多重性调整,控制假阳性的统计思维,对于多臂、多结局的研究设计都是适用的。方法,但是我还是蛮喜欢用,实际上临床研究很认可,本文用的也是这种方法。但你得加一句,像本文一样:我的结果是探索性的结果,而不是验证性的。

2025-07-04 11:45:57 792

原创 P<0.025,你的结果照样没有统计学差异

本系列的第一篇推文,我们讲了讲本研究的临床试验论文的规范性。Bonferroni方法,原理就是进行α分割,将每次检验的显著性水平调整为 α/n,其中n是检验的次数。对于次要结局和亚组分析,未对置信区间进行正式的多重性校正,结论应解读为探索性和产生假设的结果。这些方法也可以看做多重性调整,控制假阳性的统计思维,对于多臂、多结局的研究设计都是适用的。方法,但是我还是蛮喜欢用,实际上临床研究很认可,本文用的也是这种方法。但你得加一句,像本文一样:我的结果是探索性的结果,而不是验证性的。

2025-07-04 11:45:57 331

原创 P<0.025,你的结果照样没有统计学差异

本系列的第一篇推文,我们讲了讲本研究的临床试验论文的规范性。Bonferroni方法,原理就是进行α分割,将每次检验的显著性水平调整为 α/n,其中n是检验的次数。对于次要结局和亚组分析,未对置信区间进行正式的多重性校正,结论应解读为探索性和产生假设的结果。这些方法也可以看做多重性调整,控制假阳性的统计思维,对于多臂、多结局的研究设计都是适用的。方法,但是我还是蛮喜欢用,实际上临床研究很认可,本文用的也是这种方法。但你得加一句,像本文一样:我的结果是探索性的结果,而不是验证性的。

2025-07-04 11:45:57 848

原创 P<0.025,你的结果照样没有统计学差异

本系列的第一篇推文,我们讲了讲本研究的临床试验论文的规范性。Bonferroni方法,原理就是进行α分割,将每次检验的显著性水平调整为 α/n,其中n是检验的次数。对于次要结局和亚组分析,未对置信区间进行正式的多重性校正,结论应解读为探索性和产生假设的结果。这些方法也可以看做多重性调整,控制假阳性的统计思维,对于多臂、多结局的研究设计都是适用的。方法,但是我还是蛮喜欢用,实际上临床研究很认可,本文用的也是这种方法。但你得加一句,像本文一样:我的结果是探索性的结果,而不是验证性的。

2025-07-04 11:45:57 659

原创 P<0.025,你的结果照样没有统计学差异

本系列的第一篇推文,我们讲了讲本研究的临床试验论文的规范性。Bonferroni方法,原理就是进行α分割,将每次检验的显著性水平调整为 α/n,其中n是检验的次数。对于次要结局和亚组分析,未对置信区间进行正式的多重性校正,结论应解读为探索性和产生假设的结果。这些方法也可以看做多重性调整,控制假阳性的统计思维,对于多臂、多结局的研究设计都是适用的。方法,但是我还是蛮喜欢用,实际上临床研究很认可,本文用的也是这种方法。但你得加一句,像本文一样:我的结果是探索性的结果,而不是验证性的。

2025-07-04 11:45:57 484

原创 新鲜出炉!浙大公卫学者用GBD公共数据库发文顶刊BMJ杂志(IF=42.7)

15–49岁组的抑郁障碍和焦虑障碍疾病负担绝对增加幅度最大,发病率、患病率和DALYs均显著上升。DALYs和死亡数的性别模式相对一致,其中抑郁障碍、疟疾和焦虑障碍的DALYs增幅最为显著,疟疾病死率的上升幅度最大。构建时间序列模型,模拟在无新冠疫情情景下,各区域、各年龄组及各性别2020年和2021年这些病因的疾病负担,这表明,在2020–2021年COVID‑19大流行期间,抑郁障碍、焦虑障碍以及疟疾的疾病负担相。维生素A缺乏症的发病率和患病率在男性中更高,血红蛋白病及溶血性贫血在女性中更为常见。

2025-07-03 11:53:07 385

原创 今天讲讲,多臂多结局研究样本量该如何计算?

此样本量可使本研究以 80% 的统计效能和α = 0.0125的一类错误(经 Bonferroni 校正后,整体 α = 0.05)下检测CER对照组与任一改良间歇性禁食(IF:2D组、IF:2N组)组间体重或 HOMA‑IR 差异至少0.5个标准差。根据研究类型,选择随机对照试验两组均数差异性比较(另外我们还可以选择优效、非劣效和等效的设计),再填入相应的参数,即可获得估算结果。当然,一般情况下,针对人群的干预性研究,不推荐以方差分析的方式进行,研究结果,我们对其进行文献解读,并对研究设计展开论述。

2025-07-03 07:52:11 585

原创 升级!孟德尔随机化1对1R语言指导增加新套路,让你的文章更出彩

但是很多朋友反映,网上自学了孟德尔随机化方法,入门以后自己做的时候总是会有各种各样的问题,代码经常报错,每每出现问题都要耗费大量的时间去找原因解决。,能够运用课程给的R语言代码分析自己的个性化的数据,我们将在整个数据分析过程,包括数据下载、数据整理、数据分析中进行答疑指导。不仅有传统的两样本MR,还包含多变量MR、中介MR、药物靶向MR、肠道菌群孟MR,网络药理学MR、单细胞测序MR。对1指导学习班在于指导学习孟德尔随机化方法,不包括代分析,代写代码,代找数据。代码全部提供,有疑问可以1V1答疑指导。

2025-07-02 18:01:00 380

原创 一文搞懂医学研究因果推断中的有向无环图(DAGs)

碰撞变量是两个变量的共同效应,其中一个是暴露或暴露的原因,另一个是结局或结局的原因。例如,急性住院时长既受再灌注治疗影响,又受卒中病区护理影响,因此是非因果路径上从再灌注治疗到卒中病区护理、进而到功能结局路径上的碰撞变量。(b)不应控制以避免产生偏倚的变量。很多临床可用的数据,都是回顾性的,在临床数据分析的过程中,不论是研究设计、数据处理还是数据分析,经常会遇到各种各样的问题。:要识别从暴露(如溶栓/取栓)到结局(如卒中后90天功能结局)的因果路径,需“阻断”所有非因果路径,并“打开”所有因果路径。

2025-07-02 18:01:00 675

原创 多臂多结局临床试验怎么设计?这篇Lancet文章可以讲讲

在减重阶段,IF 组参与者更频繁报告头痛(IF:2D 19%、IF:2N 22%、CER 0%,两组 IF vs CER 比较均 P < 0.001)和胃肠道症状(IF:2D 7%、IF:2N 9%、CER 0%;IF:2D 组 83 人;IF:2D 组相较 CER 组均差 –0.2 kg(95% CI –6.4 至 5.9),IF:2N 组相较 CER 组均差 –0.6 kg(95% CI –6.8 至 5.6)。

2025-07-01 09:29:20 658

原创 就在明天,郑老师团队直播新课《孟德尔随机化新套路深度复现》,欢迎参加!

课程将传授如何巧妙运用公共数据库资源,结合网络药理学与单细胞组学方法,无需自己收集大量实验数据,就能开展高质量研究,生成创新性科研成果,尤其适合数据匮乏但怀揣科研梦想的学者。3.如果你目前有相应的课题经费,需要今后几年培养更多的学生,我们将推出“4999”的课程,包括2024年,2025年所有价值999元以内的课程(或999元的优惠券1张)。这几年,郑老师团队相继开设了多门临床科研设计与统计课程,如果您需要,选择多门课程,有更多优惠,,答疑时限1年,课程结束后,确保学习效果,帮助学员提升!

2025-06-27 08:48:49 600

原创 《孟德尔随机化新套路深度复现》课程,全套代码奉送,欢迎报名

课程将传授如何巧妙运用公共数据库资源,结合网络药理学与单细胞组学方法,无需自己收集大量实验数据,就能开展高质量研究,生成创新性科研成果,尤其适合数据匮乏但怀揣科研梦想的学者。3.如果你目前有相应的课题经费,需要今后几年培养更多的学生,我们将推出“4999”的课程,包括2024年,2025年所有价值999元以内的课程(或999元的优惠券1张)。这几年,郑老师团队相继开设了多门临床科研设计与统计课程,如果您需要,选择多门课程,有更多优惠,,答疑时限1年,课程结束后,确保学习效果,帮助学员提升!

2025-06-26 07:48:57 690

原创 IF=15.7!上海交通大学学者孟德尔随机化研究发文Nature子刊

对来自DICE的免疫细胞特异性表达数据,比较了五种主要免疫细胞类型(CD4+ T细胞、CD8+ T细胞、B细胞、NK细胞和单核细胞)中相同基因的表达水平。最终,主MR分析中识别的150个T2D基因中有148个(99%),以及62个CAD基因中有61个(98%)通过敏感性分析验证。最终有652个基因-T2D配对(占85.1%)和197个基因-CAD配对(占93.4%)表现出稳健的MR和共定位证据。在7项研究的单细胞基因表达数据中,对MR分析确认的172个T2D基因进行差异基因表达分析。

2025-06-25 07:48:50 467

转载 一周发文204篇!结合网药和单细胞测序的还比较少见 | 孟德尔随机化周报(6.1-6.7)

孟德尔随机化,Mendelian Randomization,简写为MR,是一种在流行病学领域应用广泛的一 种实验设计方法,利用公开数据库。基础理论讲起,逐步深入到关键技术和软件工具操作,一站式高效学习!就能轻装上阵写文章,甚至是高质量的论文。文章,部分文章介绍如下。相关主题论文,其中共。国学者文章介绍(一)国学者文章介绍(二)国学者文章介绍(三)国学者文章介绍(四)国学者文章介绍(五)国学者文章介绍(六)国学者文章介绍(七)国学者文章介绍(八)国学者文章介绍(一)国学者文章介绍(二)国学者文章介绍(三)

2025-06-23 07:48:42 34

转载 CHARLS一周热门研究方向和指标汇总 | 我们帮你清洗数据(5.25-5.31)

中国健康与养老追踪调查(China Health and Retirement Longitudinal Study,CHARLS)是一项持续的纵向调查,旨在调查中国45岁及以上中老年人社会、经济和健康状况。大型医学统计服务公众号平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理。本文汇总了该周CHARLS文章涉及的所有变量,并附带了选题思路。我们开展对临床预测模型、轨迹增长模型、医学免费数据库。(一年内不限时间,周末、晚上均统计师一对一指导)。快来简单快速看一下吧!

2025-06-20 19:15:55 115

原创 全网唯二的一键同时计算P值、率、率差及95%置信区间的工具发布了

全国较大的线上医学统计服务平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理!郑老师的风暴统计平台做了优化,直接三线表给你完整结果,详见上表,论简单方便还得是我们平台。它可以开展单个率及其置信区间的估计、两组率及率差、多组率和构成比的置信区间估计。一键同时卡方检验的P值、计算率、率差及95%置信区间,全网真找不出第3个了。都需要计算相应的率及其置信区间,以及组间率差及其置信区间,这是。但是用R代码得出的结果只有置信区间,没有卡方,没有P值。方法详见R包介绍,不过这包只能计算置信区间。

2025-06-20 08:05:33 284

原创 审稿人:论文中请增加组间率差RD及置信区间结果

是一种用于估计二项比例差异的置信区间的统计方法。现如今,研究者更加关注RR、HR、OR值,因为统计软件会主动的计算效应量及95%可信区间,以相对量来表达研究结果可以不受对组组事件发生率的影响,不同的试验中似乎可以比较轻松的进行横向比较。率差RD是一个非常重要,但同时也常被我们忽视的效应指标,尤其是大家的研究是一个特别贴近临床的课题,研究结果可能会对临床实践有影响的时候别忘记这个效应量哦。Wilson Score法作为Wald法的替代,应用十分广泛,是目前学界公认的在非极端率情况下的最佳置信区间构建方法。

2025-06-19 08:09:53 352

原创 JAMA(IF=10.5): 机器学习预测模型XGBoost方法,更优秀

基于 Shapley 值的个体患者风险随时间变化情况(以一名 16 岁患者在急诊分诊、转入普通病房再转入 ICU 直至发生关键事件的过程中 pCREST 风险百分位的变化为例)。,其区分度(C 统计量)为 0.86,显著高于两种面向普通病房的已有模型(分别为 0.82 和 0.70,均 P < .001);评估模型性能的主要指标是鉴别能力,使用受试者工作特征曲线下面积(AUC)对时间验证和外部测试队列进行评估。我们还比较了外部测试队列中表现最佳的模型和pCART在不同模型阈值下的敏感性和特异性。

2025-06-18 08:10:03 726

转载 NHANES 一站式分析平台 3.0 上线:新增数据插补功能

插补完成后,用户即可下载整理好的数据文件。该文件不仅保留了插补后的完整数据,还包含了此前的清洗和整理结果,大大提高后续分析的效率!感兴趣的朋友,欢迎大家浏览器打开下方链接进行试用哦!在插补前,阅读使用说明是提高我们插补效率的关键一步!如果对我们的平台感兴趣的话,欢迎联系我们!PS:目前平台支持xlsx、csv、rds格式下载,下载之后的数据依然是加密的形式。如有对该平台感兴趣的学友,赶紧联系我们,早买早享受吧!俗话说”十年磨一剑“,经过长时间的打磨,先选择我们需要插补的变量,点击进行插补。

2025-06-18 08:10:03 71

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除