
强化的学习
文章平均质量分 95
介绍我的强化学习研究路程
因吉
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文115:Reinforced GNNs for multiple instance learning (TNNLS‘24)
首次在MIL任务中利用多智能体深度强化学习 (MADRL)。MADRL允许灵活定义或扩展影响包图或GNN的因素,并同步控制它们原创 2024-05-31 16:21:34 · 1359 阅读 · 0 评论 -
论文阅读 (83):MuRCL: Multi-instance Reinforcement Contrastive Learning for Whole Slide Image (医学图像)
多示例学习 (MIL) 广泛应用于自动全幻灯片图像 (Whole slide image, WSI) 分析,其处理策略可以分为:1)实例特征提取;2)特征聚合。然而,由于幻灯片级别标签的弱监督性,MIL模型的训练过程通常会呈现严重的过拟合。在这种情况下,从有限的幻灯片级别标注的数据中发掘更多的信息是至关重要的。与已有的方法不同,本文着重于探索不同实例 (区块) 之间的潜在关系,而非提升实例特征的提取,以提高模型的泛化能力。原创 2022-12-21 17:41:52 · 2121 阅读 · 2 评论