pandas 增加行、列

本文详细介绍了如何使用Pandas在DataFrame中添加行和列。通过`pd.concat`函数实现行的纵向合并,直接赋值或使用`insert`方法添加新的列,展示了灵活的数据操作技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas 增加行、列

import pandas as pd
df1 = pd.DataFrame({'1列': ['1行1列', '2行1列', '3行1列', '4行1列'],
                   '2列': ['1行2列', '2行2列', '3行2列', '4行2列'],
                   '3列': ['1行3列', '2行3列', '3行3列', '4行3列'],
                   '4列': ['1行4列', '2行4列', '3行4列', '4行4列']},
                  index=['1行', '2行', '3行', '4行'])
print(df1)
       1列    2列     3列     4列
1行  1行1列  1行2列  1行3列  1行4列
2行  2行1列  2行2列  2行3列  2行4列
3行  3行1列  3行2列  3行3列  3行4列
4行  4行1列  4行2列  4行3列  4行4列
# 创建行
df2 = pd.DataFrame({'1列': ['5行1列'],
                   '2列': ['5行2列'],
                   '3列': ['5行3列'],
                   '4列': ['5行4列']},
                  index=['5行'])
print(df2)
       1列    2列    3列     4列
5行  5行1列  5行2列  5行3列  5行4列
# 创建列
df3 = pd.DataFrame({'5列': ['1行5列', '2行5列', '3行5列', '4行5列']},
                  index=['1行', '2行', '3行', '4行'])
print(df3)
      5列
1行  1行5列
2行  2行5列
3行  3行5列
4行  4行5列

添加行

# 添加行
df4 = pd.concat(
    [df1, df2],
    axis=0 # 纵向合并
)
print(df4)
       1列    2列    3列     4列
1行  1行1列  1行2列  1行3列  1行4列
2行  2行1列  2行2列  2行3列  2行4列
3行  3行1列  3行2列  3行3列  3行4列
4行  4行1列  4行2列  4行3列  4行4列
5行  5行1列  5行2列  5行3列  5行4列
# 添加行
df4.loc[
    "6行",:  # 行名
] = ['6行1列','6行2列','6行3列','6行4列']  # 修改行数据
print(df4)
      1列     2列     3列    4列
1行  1行1列  1行2列  1行3列  1行4列
2行  2行1列  2行2列  2行3列  2行4列
3行  3行1列  3行2列  3行3列  3行4列
4行  4行1列  4行2列  4行3列  4行4列
5行  5行1列  5行2列  5行3列  5行4列
6行  6行1列  6行2列  6行3列  6行4列

添加列

# 添加列python
df5 = pd.concat(
    [df1, df3],
    axis=1 # 纵向合并
)
print(df5)
      1列    2列      3列    4列     5列
1行  1行1列  1行2列  1行3列  1行4列  1行5列
2行  2行1列  2行2列  2行3列  2行4列  2行5列
3行  3行1列  3行2列  3行3列  3行4列  3行5列
4行  4行1列  4行2列  4行3列  4行4列  4行5列
# 直接添加列
df5["6列"] = ['1行6列', '2行6列', '3行6列', '4行6列']
print(df5)
      1列     2列     3列    4列     5列    6列
1行  1行1列  1行2列  1行3列  1行4列  1行5列  1行6列
2行  2行1列  2行2列  2行3列  2行4列  2行5列  2行6列
3行  3行1列  3行2列  3行3列  3行4列  3行5列  3行6列
4行  4行1列  4行2列  4行3列  4行4列  4行5列  4行6列
# 添加列
df5.loc[
    :, "7列"  # 列名
] = ['1行7列', '2行7列', '3行7列', '4行7列']  # 修改列数据
print(df5)
      1列     2列     3列     4列     5列    6列     7列
1行  1行1列  1行2列  1行3列  1行4列  1行5列  1行6列  1行7列
2行  2行1列  2行2列  2行3列  2行4列  2行5列  2行6列  2行7列
3行  3行1列  3行2列  3行3列  3行4列  3行5列  3行6列  3行7列
4行  4行1列  4行2列  4行3列  4行4列  4行5列  4行6列  4行7列
df5.insert(
    5,  # 插入的位置
    '8列',  # 列名
    ['1行8列', '2行8列', '3行8列', '4行8列']  # 数据
)
print(df5)
      1列     2列     3列    4列     5列     8列    6列     7列
1行  1行1列  1行2列  1行3列  1行4列  1行5列  1行8列  1行6列  1行7列
2行  2行1列  2行2列  2行3列  2行4列  2行5列  2行8列  2行6列  2行7列
3行  3行1列  3行2列  3行3列  3行4列  3行5列  3行8列  3行6列  3行7列
4行  4行1列  4行2列  4行3列  4行4列  4行5列  4行8列  4行6列  4行7列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏华东的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值