详解 Spark 核心编程之 RDD 分区器

一、RDD 分区器简介

  • Spark 分区器的父类是 Partitioner 抽象类
  • 分区器直接决定了 RDD 中分区的个数、RDD 中每条数据经过 Shuffle 后进入哪个分区,进而决定了 Reduce 的个数
  • 只有 Key-Value 类型的 RDD 才有分区器,非 Key-Value 类型的 RDD 分区的值是 None
  • 每个 RDD 的分区索引的范围:0~(numPartitions - 1)

二、HashPartitioner

默认的分区器,对于给定的 key,计算其 hashCode 并除以分区个数取余获得数据所在的分区索引

class HashPartitioner(partitions: Int) extends Partitioner {
   
   
    require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")
    
    def numPartitions: Int = partitions
    
    def getPartition(key: Any): Int = key match {
   
   
    	case null => 0
    	case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
    }
    
    override def equals(other: Any): Boolean = other match {
   
   
    	case h: HashPartitioner => h.numPartitions == numPartitions
    	case _ => false
    }
    
    override def hashCode: Int = numPartitions
}

三、RangePartitioner

将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序

class RangePartitioner[K
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值