六、MapReduce第六讲共同好友(Common friends)
某某社交网站,有如下用户好友关系:
A:B,C,D,
F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
数据解释:
A:B,C,D,F,E,O
每行数据以冒号为分隔符:
1、冒号左边是网站的一个用户A;
2、冒号右边是用户A的好友列表(各好友间以逗号为分隔符);
现在,需要对网站的几十亿用户进行分析,找出哪些用户两两之间有共同好友,以及他俩的共同好友都有哪些人。比如,A、B两个用户拥有共同好友C和E;
最终统计的结果数据示意如下:
A-L F,E,D
A-M E,F B-C A
B-D A,E
B-E C
设计思路:
整个实验过程需要写两个MapReduce程序来实现。
第一个job实现出来的结果是
B-C A
B-D A
该数据的意思是B和C用户、B和D用户都是A用户的好友
第二个job实现出来的结果是
A-B E,C
A-C D,F
A-D E,F
该数据的意思是A和B的共同好友是E用户,C用户。
接下来我们开始写第一个job类。
代码如下:
package demo;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
public class demo{
public static void main(String[] args) {
Configuration conf=new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(demo.class);
job.setMapperClass(MMapper.class);
job.setReducerClass(MReduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path