MapReduce数据分析(6)共同好友

六、MapReduce第六讲共同好友(Common friends)

某某社交网站,有如下用户好友关系:

A:B,C,D,
F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J

数据解释:

A:B,C,D,F,E,O

每行数据以冒号为分隔符:

1、冒号左边是网站的一个用户A;
2、冒号右边是用户A的好友列表(各好友间以逗号为分隔符);
现在,需要对网站的几十亿用户进行分析,找出哪些用户两两之间有共同好友,以及他俩的共同好友都有哪些人。比如,A、B两个用户拥有共同好友C和E;

最终统计的结果数据示意如下:

A-L F,E,D
A-M E,F B-C A
B-D A,E
B-E C

设计思路:
整个实验过程需要写两个MapReduce程序来实现。
第一个job实现出来的结果是

B-C A
B-D A

该数据的意思是B和C用户、B和D用户都是A用户的好友
第二个job实现出来的结果是

A-B E,C
A-C D,F
A-D E,F

该数据的意思是A和B的共同好友是E用户,C用户。

接下来我们开始写第一个job类。
代码如下:

package demo;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

public class demo{
   
   
	public static void main(String[] args) {
   
   
		
		Configuration conf=new Configuration();
		Job job = Job.getInstance(conf);
		job.setJarByClass(demo.class);
		job.setMapperClass(MMapper.class);
		job.setReducerClass(MReduce.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(Text.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);
		FileInputFormat.setInputPaths(job, new Path
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机程序猿

觉得写的不错的给小编一点鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值