隐式微分方程求解Matlab

本文详细介绍了如何在Matlab中使用ode45函数求解微分方程,包括将高阶微分方程转化为一阶方程的方法。通过实例展示了匿名函数和.m文件两种方式使用ode45,并探讨了处理隐式微分方程的三种策略:利用solve函数、fsolve函数和ode15i函数。同时,提供了源码链接供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微分方程求解Matlab详解

   在matlab求解微分方程有很多中,ode45是最常见的,当然,ode45求解有一定条件,就是需要把高阶微分方程转化为1阶微分方程。即使用降阶法。降阶法原理就是引入中间变量,然后实现降阶。例如: F ( t , y , y ′ , y ′ ′ ) = 0 F(t,y,y^{'},y^{''})=0 F(t,y,y,y′′)=0   令 x 1 = y x_1=y x1=y, x 2 = y ′ x_2=y^{'} x2=y,那么就可以将原来的二阶微分方程降阶为两个一阶微分方程。
d x 1 d t = x 2 d x 2 d t = G ( t , x 1 , x 2 ) \begin{matrix} \frac{dx_1}{dt}=x_2 \\ \frac{dx_2}{dt}=G(t,x_1,x_2) \end{matrix} dtdx1=x2dtdx2=G(t,x1,x2)
   高阶微分方程组同理!!!

例子

   这里以一个简单的例子演示ode45,以及包括之后使用的均为这个例子:
y ′ − 2 t = 0 y^{'}-2t = 0 y2t=0
   并且指定时间区间 [ 0 , 5 ] [0,5] [0,5]和初始条件 y 0 = 0 y_{0} = 0 y0=0

ODE45求解

使用匿名函数的方式
clc;clear all;
tspan = [0 5];
y0 = 0;

figure(1)
[t,y] = ode45(@(t,y) 2*t, tspan, y0);
plot(t,y,'-o')
使用.m文件的方式
function dy = Fcn(t,y)
	%FCN 
	dy=2*t;
end
clc;clear all;
tspan = [0 5];
y0 = 0;

figure(2)
[t1,y2] = ode45(@Fcn, tspan, y0);
plot(t1,y2,'-o')

在这里插入图片描述

隐式微分方程求解

   ODE45使用最困难的一步就是微分方程的降阶,对于一个含有最高阶耦合项的微分方程来说,根本无法手动将其化简为一阶微分方程,例如:
t y ′ ′ 3 + y ′ y ′ ′ + y = 0 ty^{''3}+y^{'}y^{''}+y = 0 ty′′3+yy′′+y=0
   那对于这种该如何求解呢?

方法1-使用solve()求解高阶表达式

   以上面的例子为例,将 F ( t , y , y ′ ) = 0 F(t,y,y^{'})=0 F(t,y,y)=0看做是 y ′ y^{'} y的方程,利用solve()函数求解出 y ′ y^{'} y的表达式。这种方法是省去了手动的降阶,而使用计算机代替我们计算,我将这个封装了一个函数,可以通用,源码和参考在这里

clc;clear all;
syms dy t y
eq = dy-2*t;

dy = solve(eq,dy) 

matlabFunction(dy,'File','Fcn','Vars',[t,y]);

tspan = [0 5];
y0 = 0;

figure(1)

[t,y] = ode45(@Fcn, tspan, y0);

plot(t,y,'-o')

在这里插入图片描述

方法2-使用求解高阶变量的数值解,再使用ode45

   然而,对于上述的方法,不是所有的微分方程都能算出最高阶的解析解。那么我们就么有办法了吗?观察ode45所传入的函数句柄,例如 F ( t , y , y ′ ) = 0 F(t,y,y^{'})=0 F(t,y,y)=0,输入是t,y,输出是 y ′ y^{'} y,也就是说,我们要通过变量的低阶值和时间t求解变量的最高阶的值,因此,对于任意复杂的 F ( t , y , y ′ ) = 0 F(t,y,y^{'})=0 F(t,y,y)=0或者是高阶微分方程组,我们在函数句柄,利用fsolve求解出最高阶的值,将其返回即可。

function dy = Fcn(t,y)
fun = @(dy)dy-2*t;
options=optimset('display','off');
dy = fsolve(fun,0,options) ;
clc;clear all;
tspan = [0 5];
y0 = 0;

figure(2)
[t1,y2] = ode45(@Fcn, tspan, y0);
plot(t1,y2,'-o')

在这里插入图片描述

方法3-使用ode15i

   matlab在后续版本提供了ode15i,其求解思路类似上面方法2。具体使用

function fcn = Fcn(t,y,dy)
%WEISSINGER  Evaluate the residual of the Weissinger implicit ODE
%
%   See also ODE15I.
%   Jacek Kierzenka and Lawrence F. Shampine
%   Copyright 1984-2014 The MathWorks, Inc.

fcn = dy - t.*2.0;
clc;clear all;
t0 = 0;
tspan = [t0 5];
y0 = 0;
yp0 =1;

% 计算一致的初始条件
% ode15i 求解器需要一致的初始条件,即提供给求解器的初始条件必须满足
% 这个就是需要满足微分方程
[y0,dy0] = decic(@Fcn,t0,y0,1,yp0,0);
[t,y] = ode15i(@Fcn, tspan, y0,dy0);
figure(1)
plot(t,y,'-o')

在这里插入图片描述

源码gtihub

    GitHub传送门!!!

### 数值求解微分方程 在数值计算领域,MATLAB 提供了多种工具来解决复杂的常微分方程 (ODE),特别是针对的高微分方程。虽然 MATLAB 的 `ode45` 是种显龙格-库塔法,主要用于显 ODE 系统,但对于问题或者更高微分方程,则可以采用其他更适合的方法。 #### 使用 MATLAB 中的 ode15i 解决微分方程 对于微分方程 \( F(t, y, y') = 0 \),MATLAB 提供了个专门用于处理这类问题的函数——`ode15i`[^2]。该函数能够有效应对的初值问题,并支持自动调整步长以提高精度。 考虑给定的个二微分方程: \[ t(y'')^3 + y'y'' + y = 0 \] 为了利用 `ode15i` 进行求解,需先将此二方程转化为方程组的形。设辅助变量如下: \[ z_1 = y,\quad z_2 = y' \] 则原方程可重写为两个联立关系: \[ F_1(t,z_1,z_2,f) = f - z_2, \] 以及由原始方程转换得到的关系: \[ F_2(t,z_1,z_2,f,g) = tg^3 + z_2g + z_1. \] 其中 $f$ 和 $g$ 分别代表导数项 $y'$ 及其进步推导出的 $y''$。通过定义这些非线性约束条件并提供初始猜测值,即可调用 `ode15i` 来完成数值积分过程。 以下是具体实现代码: ```matlab function dydt = myImplicitODE(t,y,yp) % 定义微分方程系统 res(1) = yp(1) - y(2); % 对应于 z'_1 = z_2 res(2) = t*yp(2)^3 + y(2)*yp(2) + y(1); % 原始二方程改写的部分 end % 主程序设置参数 tspan = [0.1, 5]; % 时间范围避开奇点(此处假设) y0 = [1; 0]; % 初始状态向量[y;y'] yp0 = [-1; -sqrt(-y0(1)/tspan(1))]; % 初猜斜率估计值[-dy/dt;-d2y/dt2] options = odeset('RelTol',1e-6,'AbsTol',[1e-8 1e-8]); [t,y] = ode15i(@myImplicitODE,tspan,y0,yp0,options); plot(t,y(:,1),'-',t,y(:,2),'--'); % 绘制结果曲线 legend('y','dy/dt'); xlabel('Time t'); ylabel('Solution Values'); title('Numerical Solution of Implicit Second Order DE using ode15i'); ``` 以上脚本展示了如何构建适合输入到 `ode15i` 函数中的匿名函数句柄及其必要配置选项。注意这里选取的时间区间起点不为零是为了规避可能存在的除零错误或其他奇异行为。 #### 其他替代方案 除了借助内置求解器外,还可以尝试编写自定义算法比如有限差分方法(FDM)[^3] 或者边界元法(BEM)等离散化技术自行逼近连续域上的解析解路径;不过这通常会增加额外的工作负担而且未必能获得更优的结果质量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cuntou0906

玛莎拉蒂是我的目标!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值