两数之和 II - 输入有序数组
题目
给定一个已按照非递减顺序排列的整数数组 numbers ,从数组中找出两个数满足相加之和等于目标数 target 。
函数应该以长度为 2 的整数数组的形式返回这两个数的下标值。numbers 的下标从 1 开始计数 ,所以答案数组应当满足 1 <= answer[0] < answer[1] <= numbers.length 。
假设每个输入只对应唯一的答案 ,而且不可以重复使用相同的元素。
示例
输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。
题解
方法 1 二分查找
在数组中找到两个数,使其之和等于目标值 target,可以先固定一个数 x ,再寻找另一个数 target-x 。利用数组的有序性质,可以通过二分法查找。为了避免重复查找,固定第一个数后,第二个数只在第一个数右侧范围内查找。
方法 2 双指针
使用双指针缩小查找范围,直至找到目标位置。
初始时两指针分别指向首尾元素位置,计算指针指向元素之和。若两数之和等于目标值,则找到唯一解;若两数之和大于目标值,则右指针向左移动;若两数之和小于目标值,则左指针向右移动。
由于左指针从指向第一个元素位置开始,所以只需一直向右移动,向右移动时两数之和变大;由于右指针从指向最后一个元素位置开始,所以只需一直向左移动,向左移动时两数之和变小。因此,按照上述移动策略,两指针移动不会忽略可能的解。
代码
方法 1 二分查找
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
//固定第一个数
for (int i = 0; i < numbers.size(); ++i) {
//在第一个数右侧查找第二个数
int low = i + 1, high = numbers.size() - 1;
//二分法查找
while (low <= high) {
int mid = (high - low) / 2 + low;
if (numbers[mid] == target - numbers[i]) {
return {i + 1, mid + 1};
} else if (numbers[mid] > target - numbers[i]) {
high = mid - 1;
} else {
low = mid + 1;
}
}
}
return {-1, -1};
}
};
方法 2 双指针
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
//定义双指针
int low = 0, high = numbers.size() - 1;
while (low < high) {
int sum = numbers[low] + numbers[high];
if (sum == target) {
return {low + 1, high + 1};
} else if (sum < target) {
++low;
} else {
--high;
}
}
return {-1, -1};
}
};