什么是机器学习

本文探讨了机器学习的定义,引用了亚瑟·塞缪尔和汤姆·米切尔的观点,并通过下棋的例子解释了计算机如何从经验中学习。此外,还介绍了机器学习的两大类别:监督学习和无监督学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是机器学习?

提供了机器学习的两种定义。亚瑟·塞缪尔(Arthur Samuel)将其描述为:“研究领域使计算机无需进行明确编程即可学习。” 这是一个较旧的非正式定义。

汤姆·米切尔(Tom Mitchell)提供了一个更现代的定义:“如果某计算机程序在T任务上的性能(由P来衡量)随着经验E的提高而提高,那么据说计算机程序可以从经验E中学习一些任务T和性能指标P。 ”

例如:玩跳棋。

E =玩许多跳棋游戏的经验

T =扮演跳棋的任务。

P =程序将赢得下一场比赛的概率。

通常,可以将任何机器学习问题分配给以下两个广泛的分类之一:

监督学习和无监督学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值