Leetcode 买卖股票的最佳时机III

该博客介绍了一个使用动态规划算法解决股票交易问题的实例。代码展示了一个Java类,计算在最多两次交易中能获得的最大利润。动态规划表dp用于记录不同状态下的最优解,包括未持股、已卖出一次和已卖出两次的状态。算法遍历股票价格数组,更新每个状态下的最大利润。最终返回的是在最后一天可能达到的最大利润。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

买卖股票的最佳时机III

题目描述:

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

题目链接

class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][][] dp = new int[n][2][3];
        dp[0][0][0] = 0;
        //第一天买入
        dp[0][1][0] = -prices[0];
        // 第一天不可能已经有卖出
        dp[0][0][1] = -100000;
        dp[0][0][2] = -100000;
        // 第一天不可能已经卖出
        dp[0][1][1]= -100000;
        dp[0][1][2]= -100000;

        for (int i = 1; i < n; i++ ) {
            //未持股,未卖出过,说明从未进行过买卖
            dp[i][0][0] = 0;
            //未持股,卖出过1次,可能是今天卖的,可能是之前卖的
            dp[i][0][1] = Math.max(dp[i-1][1][0]+prices[i],dp[i-1][0][1]);
            //未持股,卖出过2次,可能是今天卖的,可能是之前卖的
            dp[i][0][2] = Math.max(dp[i-1][1][1]+prices[i],dp[i-1][0][2]);
            //持股,未卖出过,可能是今天买的,可能是之前买的
            dp[i][1][0] = Math.max(dp[i-1][0][0]-prices[i],dp[i-1][1][0]);
            //持股,卖出过1次,可能是今天买的,可能是之前买的
            dp[i][1][1] = Math.max(dp[i-1][0][1]-prices[i],dp[i-1][1][1]);
            //持股,卖出过2次,不可能
            dp[i][1][2] = -100000;
        }
        int result = Math.max(Math.max(dp[n-1][0][1],dp[n-1][0][2]),0);
        return result;
    }
}

按照题意即可,动态规划题目,详细请看代码,有疑问欢迎留言。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值