目录
- 传统互信息
- Estimating Mutual Information中的的两种基于最近邻的互信息
- Mutual Information between Discrete and Continuous Data Sets论文中提到的互信息
1. 传统互信息
- 已知变量(X,Y)(X,Y)(X,Y)的联合概率密度
对于一个NNN维的双变量点对(xi,yi),i=1,...N(x_i, y_i), i = 1, . . . N(xi,yi),i=1,...N,假设其是由联合概率密度为μ(x,y)\mu(x,y)μ(x,y)的变量(X,Y)(X,Y)(X,Y)生成的一组独立同分布的数据,由此我们可以计算得到x,yx,yx,y各自的边缘概率密度,即,μ(x)=∫μ(x,y)d(x)\mu(x)=\int\mu(x,y)d(x)μ(x)=∫μ(x,y)d(x),μ(y)=∫μ(x,y)d(y)\mu(y)=\int\mu(x,y)d(y)μ(y)=∫μ(x,y)d(y)。由此,我们可以根据下述公式计算得到变量(X,Y)(X,Y)(X,Y)的互信息I(X,Y)I(X,Y)I(X,Y)。
在解决实际问题的时候,我们通常是不知道变量(X,Y)(X,Y)(X,Y)的联合概率密度的,而且,变量XXX与变量YYY一般来说是离散的,由此,我们采用分箱(binning)的方法,来计算变量(X,Y)(X,Y)