背景意义
研究背景与意义
细胞类型的识别在医学诊断、疾病监测和生物研究中具有重要意义。随着计算机视觉技术的快速发展,基于深度学习的图像识别方法逐渐成为细胞分类的主流手段。YOLO(You Only Look Once)系列模型因其高效的实时检测能力和较高的准确性,广泛应用于各种视觉任务。尤其是YOLOv11作为该系列的最新版本,凭借其改进的网络结构和算法,能够更好地处理复杂的图像特征,提升细胞类型识别的精度和速度。
在细胞病理学中,准确识别不同类型的细胞对于早期诊断和治疗方案的制定至关重要。通过对细胞进行分类,可以帮助医生更好地理解病变的性质,从而制定个性化的治疗方案。本研究将基于改进的YOLOv11模型,开发一个细胞类型识别系统,旨在提高对五种特定细胞类型(如Dyskeratotic、Koilocytotic、Metaplastic、Parabasal和Superficial-Intermediate)的识别能力。
本项目所使用的数据集包含1700幅经过精细标注的细胞图像,涵盖了多种细胞类型。数据集的多样性和丰富性为模型的训练提供了良好的基础。通过对数据集的有效利用,结合YOLOv11的强大功能,我们期望能够显著提升细胞识别的准确率,并在此基础上为相关领域的研究提供新的思路和方法。
此外,随着医学影像数据的不断增加,如何高效、准确地处理和分析这些数据成为一个亟待解决的问题。本研究不仅具有重要的理论价值,也为实际应用提供了有力的支持。通过构建一个高效的细胞类型识别系统,我们希望能够推动细胞生物学和医学影像分析领域的发展,为未来的研究和临床应用奠定基础。
图片效果
数据集信息
本项目数据集信息介绍
本项目所使用的数据集旨在为改进YOLOv11的细胞类型识别系统提供坚实的基础。该数据集围绕“many_toget”主题构建,专注于细胞类型的分类与识别,涵盖了五种不同的细胞类别。这些类别分别为:Dyskeratotic(角化不良细胞)、Koilocytotic(空泡细胞)、Metaplastic(化生细胞)、Parabasal(基底细胞)和Superficial-Intermediate(表层-中间细胞)。每一种细胞类型在临床病理学中具有重要的诊断意义,因此准确的识别和分类对于疾病的早期发现和治疗至关重要。
数据集的构建过程遵循严格的标准,确保每一类细胞样本的代表性和多样性。样本来源于多种临床样本和实验室切片,经过精细的标注和分类,确保每个细胞图像都能准确反映其对应的类别特征。这种多样化的样本收集策略不仅提高了模型的泛化能力,也增强了其在不同条件下的识别准确性。
在数据集的标注过程中,采用了先进的图像处理技术,以确保细胞特征的清晰可辨。每个细胞图像都经过专业的病理学家审核,确保标注的准确性和一致性。这种高质量的数据集为YOLOv11模型的训练提供了丰富的学习材料,使其能够更好地理解和识别不同类型的细胞。
通过对这些细胞类型的深入学习,改进后的YOLOv11系统将能够在临床应用中实现更高效的细胞识别和分类,为病理诊断提供有力支持。最终目标是提升细胞识别的准确性和效率,推动医学影像分析领域的发展。
核心代码
以下是简化后的核心代码部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.layers import weight_init
定义激活函数类
class Activation(nn.ReLU):
def init(self, dim, act_num=3, deploy=False):
super(Activation, self).init()
self.deploy = deploy
# 初始化权重和偏置
self.weight = torch.nn.Parameter(torch.randn(dim, 1, act_num2 + 1, act_num2 + 1))
self.bn = nn.BatchNorm2d(dim, eps=1e-6) # 批归一化
weight_init.trunc_normal_(self.weight, std=.02) # 权重初始化
def forward(self, x):
# 前向传播
if self.deploy:
return F.conv2d(
super(Activation, self).forward(x),
self.weight, None, padding=(self.act_num*2 + 1)//2, groups=self.dim)
else:
return self.bn(F.conv2d(
super(Activation, self).forward(x),
self.weight, padding=self.act_num, groups=self.dim))
def switch_to_deploy(self):
# 切换到部署模式,融合批归一化
if not self.deploy:
kernel, bias = self._fuse_bn_tensor(self.weight, self.bn)
self.weight.data = kernel
self.bias = torch.nn.Parameter(torch.zeros(self.dim))
self.bias.data = bias
self.__delattr__('bn') # 删除bn属性
self.deploy = True
def _fuse_bn_tensor(self, weight, bn):
# 融合权重和批归一化
running_mean = bn.running_mean
running_var = bn.running_var
gamma = bn.weight
beta = bn.bias
eps = bn.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return weight * t, beta - running_mean * gamma / std
定义基本块
class Block(nn.Module):
def init(self, dim, dim_out, act_num=3, stride=2, deploy=False):
super().init()
self.deploy = deploy
# 根据是否部署选择不同的卷积结构
if self.deploy:
self.conv = nn.Conv2d(dim, dim_out, kernel_size=1)
else:
self.conv1 = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=1),
nn.BatchNorm2d(dim, eps=1e-6),
)
self.conv2 = nn.Sequential(
nn.Conv2d(dim, dim_out, kernel_size=1),
nn.BatchNorm2d(dim_out, eps=1e-6)
)
self.pool = nn.MaxPool2d(stride) if stride != 1 else nn.Identity() # 池化层
self.act = Activation(dim_out, act_num) # 激活函数
def forward(self, x):
# 前向传播
if self.deploy:
x = self.conv(x)
else:
x = self.conv1(x)
x = F.leaky_relu(x, negative_slope=0.1) # 使用Leaky ReLU激活
x = self.conv2(x)
x = self.pool(x) # 池化
x = self.act(x) # 激活
return x
def switch_to_deploy(self):
# 切换到部署模式,融合卷积和批归一化
if not self.deploy:
kernel, bias = self._fuse_bn_tensor(self.conv1[0], self.conv1[1])
self.conv1[0].weight.data = kernel
self.conv1[0].bias.data = bias
kernel, bias = self._fuse_bn_tensor(self.conv2[0], self.conv2[1])
self.conv = self.conv2[0]
self.conv.weight.data = kernel
self.conv.bias.data = bias
self.__delattr__('conv1')
self.__delattr__('conv2')
self.act.switch_to_deploy()
self.deploy = True
定义VanillaNet模型
class VanillaNet(nn.Module):
def init(self, in_chans=3, num_classes=1000, dims=[96, 192, 384, 768], strides=[2,2,2,1], deploy=False):
super().init()
self.deploy = deploy
# 定义输入层
if self.deploy:
self.stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
Activation(dims[0])
)
else:
self.stem1 = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
nn.BatchNorm2d(dims[0], eps=1e-6),
)
self.stem2 = nn.Sequential(
nn.Conv2d(dims[0], dims[0], kernel_size=1, stride=1),
nn.BatchNorm2d(dims[0], eps=1e-6),
Activation(dims[0])
)
self.stages = nn.ModuleList()
for i in range(len(strides)):
stage = Block(dim=dims[i], dim_out=dims[i+1], stride=strides[i], deploy=deploy)
self.stages.append(stage)
def forward(self, x):
# 前向传播
if self.deploy:
x = self.stem(x)
else:
x = self.stem1(x)
x = F.leaky_relu(x, negative_slope=0.1)
x = self.stem2(x)
for stage in self.stages:
x = stage(x) # 通过每个Block
return x
def switch_to_deploy(self):
# 切换到部署模式
if not self.deploy:
self.stem2[2].switch_to_deploy()
kernel, bias = self._fuse_bn_tensor(self.stem1[0], self.stem1[1])
self.stem1[0].weight.data = kernel
self.stem1[0].bias.data = bias
self.stem = nn.Sequential(self.stem1[0], self.stem2[2])
self.__delattr__('stem1')
self.__delattr__('stem2')
for stage in self.stages:
stage.switch_to_deploy()
self.deploy = True
测试模型
if name == ‘main’:
inputs = torch.randn((1, 3, 640, 640)) # 随机输入
model = VanillaNet(dims=[1284, 2564, 5124, 10244]) # 创建模型
pred = model(inputs) # 前向传播
for i in pred:
print(i.size()) # 输出每层的尺寸
代码注释说明:
Activation类:自定义的激活函数类,继承自nn.ReLU,支持在训练和部署模式下的不同处理。
Block类:定义了一个基本的卷积块,包含卷积层、批归一化和激活函数。根据deploy标志决定使用不同的结构。
VanillaNet类:主模型类,包含输入层和多个Block。支持在训练和部署模式下的不同处理。
switch_to_deploy方法:用于切换到部署模式,融合批归一化层以提高推理效率。
主函数:用于测试模型的前向传播,输出每层的尺寸。
这个程序文件名为 VanillaNet.py,主要实现了一个名为 VanillaNet 的深度学习模型,适用于图像处理任务。该模型的设计灵感来源于现代卷积神经网络(CNN),并结合了一些新的技术和结构以提高性能。
文件开头包含版权信息和许可证声明,说明该程序是开源的,可以在 MIT 许可证下使用和修改。接下来,程序导入了必要的库,包括 PyTorch 和一些自定义的模块。
在代码中,定义了多个类和函数。首先是 activation 类,它继承自 nn.ReLU,用于实现自定义的激活函数。这个类包含了可学习的权重和偏置,并在前向传播中应用卷积操作。该类还实现了批归一化(Batch Normalization)和权重融合的方法,以便在模型部署时优化性能。
接着是 Block 类,它是 VanillaNet 的基本构建块。每个 Block 包含多个卷积层和激活函数,支持不同的步幅和可选的自适应池化。Block 类同样实现了权重融合和切换到部署模式的方法,以提高推理效率。
VanillaNet 类是整个模型的核心。它初始化了模型的结构,包括输入通道、类别数、各层的维度、丢弃率等参数。模型的前向传播过程包括通过多个 Block 进行特征提取,并在每个阶段根据输入大小记录特征图。该类还实现了权重初始化和激活函数的调整方法。
在文件的后半部分,定义了一些函数(如 update_weight 和多个 vanillanet_x 函数),用于创建不同配置的 VanillaNet 模型,并支持加载预训练权重。这些函数允许用户根据需要选择不同的模型架构和参数设置。
最后,文件中有一个主程序块,创建了一个随机输入并实例化了 vanillanet_10 模型,随后进行前向传播并打印输出特征图的尺寸。这部分代码可以用于快速测试模型的基本功能。
总体来说,这个程序实现了一个灵活且高效的卷积神经网络架构,适合用于各种计算机视觉任务,并提供了多种配置选项以满足不同的需求。
10.4 metaformer.py
以下是保留的核心代码部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
class MF_Attention(nn.Module):
“”"
自注意力机制的实现,参考Transformer论文。
“”"
def init(self, dim, head_dim=32, num_heads=None, qkv_bias=False,
attn_drop=0., proj_drop=0., proj_bias=False):
super().init()
# 设置头部维度和缩放因子
self.head_dim = head_dim
self.scale = head_dim ** -0.5
# 计算头的数量
self.num_heads = num_heads if num_heads else dim // head_dim
if self.num_heads == 0:
self.num_heads = 1
# 计算注意力的维度
self.attention_dim = self.num_heads * self.head_dim
# 定义线性层用于计算Q、K、V
self.qkv = nn.Linear(dim, self.attention_dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop) # 注意力的dropout
self.proj = nn.Linear(self.attention_dim, dim, bias=proj_bias) # 投影层
self.proj_drop = nn.Dropout(proj_drop) # 投影后的dropout
def forward(self, x):
B, H, W, C = x.shape # 获取输入的批次大小、高度、宽度和通道数
N = H * W # 计算总的token数量
# 计算Q、K、V并进行重塑
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # 分离Q、K、V
# 计算注意力权重
attn = (q @ k.transpose(-2, -1)) * self.scale # 点积注意力
attn = attn.softmax(dim=-1) # 归一化
attn = self.attn_drop(attn) # 应用dropout
# 计算输出
x = (attn @ v).transpose(1, 2).reshape(B, H, W, self.attention_dim) # 加权求和
x = self.proj(x) # 投影到原始维度
x = self.proj_drop(x) # 应用dropout
return x # 返回结果
class Mlp(nn.Module):
“”"
多层感知机(MLP)模块,常用于MetaFormer模型。
“”"
def init(self, dim, mlp_ratio=4, out_features=None, act_layer=nn.GELU, drop=0., bias=False):
super().init()
in_features = dim
out_features = out_features or in_features
hidden_features = int(mlp_ratio * in_features) # 隐藏层特征数
drop_probs = (drop, drop) # dropout概率
# 定义两层线性变换
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.act = act_layer() # 激活函数
self.drop1 = nn.Dropout(drop_probs[0]) # 第一层的dropout
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
self.drop2 = nn.Dropout(drop_probs[1]) # 第二层的dropout
def forward(self, x):
x = self.fc1(x) # 第一层线性变换
x = self.act(x) # 激活
x = self.drop1(x) # 应用dropout
x = self.fc2(x) # 第二层线性变换
x = self.drop2(x) # 应用dropout
return x # 返回结果
class MetaFormerBlock(nn.Module):
“”"
MetaFormer块的实现。
“”"
def init(self, dim,
token_mixer=nn.Identity, mlp=Mlp,
norm_layer=nn.LayerNorm,
drop=0., drop_path=0.,
layer_scale_init_value=None, res_scale_init_value=None):
super().__init__()
self.norm1 = norm_layer(dim) # 第一层归一化
self.token_mixer = token_mixer(dim=dim, drop=drop) # token混合器
self.drop_path1 = nn.Dropout(drop_path) if drop_path > 0. else nn.Identity() # 路径dropout
self.layer_scale1 = nn.Parameter(torch.ones(dim)) if layer_scale_init_value else nn.Identity() # 层缩放
self.res_scale1 = nn.Parameter(torch.ones(dim)) if res_scale_init_value else nn.Identity() # 残差缩放
self.norm2 = norm_layer(dim) # 第二层归一化
self.mlp = mlp(dim=dim, drop=drop) # MLP模块
self.drop_path2 = nn.Dropout(drop_path) if drop_path > 0. else nn.Identity() # 路径dropout
self.layer_scale2 = nn.Parameter(torch.ones(dim)) if layer_scale_init_value else nn.Identity() # 层缩放
self.res_scale2 = nn.Parameter(torch.ones(dim)) if res_scale_init_value else nn.Identity() # 残差缩放
def forward(self, x):
x = self.norm1(x) # 归一化
x = self.token_mixer(x) # token混合
x = self.drop_path1(x) # 应用dropout
x = self.layer_scale1(x) + x # 残差连接
x = self.norm2(x) # 归一化
x = self.mlp(x) # MLP处理
x = self.drop_path2(x) # 应用dropout
x = self.layer_scale2(x) + x # 残差连接
return x # 返回结果
代码说明
MF_Attention: 实现了自注意力机制,主要包括计算Q、K、V,计算注意力权重,并将其应用于值V上,最后通过线性层投影回原始维度。
Mlp: 实现了一个简单的多层感知机,包含两层线性变换和激活函数,支持dropout。
MetaFormerBlock: 实现了MetaFormer的基本块,包含归一化、token混合、MLP和残差连接。通过层缩放和路径dropout增强模型的稳定性和性能。
这个程序文件 metaformer.py 实现了一些用于构建 MetaFormer 模型的基础组件。MetaFormer 是一种新型的深度学习架构,主要用于图像处理和计算机视觉任务。文件中定义了多个类,每个类都实现了特定的功能,以下是对这些类的逐一说明。
首先,Scale 类用于对输入向量进行元素级别的缩放。它通过一个可训练的参数 scale 来实现,允许在训练过程中调整缩放因子。
接下来,SquaredReLU 和 StarReLU 类实现了不同的激活函数。SquaredReLU 是对 ReLU 激活函数的平方形式,而 StarReLU 则在 ReLU 的基础上增加了可学习的缩放和偏置参数。
MF_Attention 类实现了经典的自注意力机制,源自 Transformer 模型。它通过线性变换生成查询、键和值,并计算注意力权重,最后通过线性投影输出结果。
RandomMixing 类用于对输入进行随机混合,生成一个随机矩阵并应用于输入特征。这种操作可以用于增强模型的鲁棒性。
LayerNormGeneral 类实现了一种通用的层归一化,允许用户自定义归一化的维度和是否使用缩放与偏置。LayerNormWithoutBias 是一个优化版本,直接使用 PyTorch 的 F.layer_norm 函数来实现层归一化,但不使用偏置。
SepConv 类实现了分离卷积,源自 MobileNetV2 的设计。它首先通过一个线性层进行逐点卷积,然后进行深度卷积,最后再通过另一个线性层输出结果。
Pooling 类实现了一种池化操作,主要用于 PoolFormer 模型。它通过平均池化来减小特征图的尺寸,并将结果与原始输入相减。
Mlp 类实现了多层感知机(MLP),通常用于 MetaFormer 模型中。它包含两个线性层和一个激活函数,支持 dropout 操作。
ConvolutionalGLU 类实现了一种卷积门控线性单元(GLU),结合了卷积和激活函数的特性,用于提取特征。
MetaFormerBlock 和 MetaFormerCGLUBlock 类分别实现了 MetaFormer 的基本模块。这些模块结合了归一化、令牌混合、MLP 和残差连接等机制,形成了深度网络的基本构建块。
整体而言,这个文件提供了构建 MetaFormer 模型所需的基础组件,支持灵活的设计和多种变体,适用于各种计算机视觉任务。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻