- 博客(31)
- 收藏
- 关注
原创 一种基于潜在表征的轻量级无人机热成像超分辨率网络
本文提出了一种轻量级热图像超分辨率网络LTSR,用于解决无人机热图像分辨率不足的问题。该方法通过多尺度知识蒸馏(MSKD)网络提取判别性特征,并利用潜在表征建模特征间的连续关系。LTSR包含特征提取编码器和重建解码器两部分,通过M次迭代逐步重建高分辨率热图像。实验表明,该方法在减少参数量的同时,超分辨率精度优于现有技术。关键创新包括:1)构建MSKD网络从多感受野提取压缩特征;2)设计潜在表征学习框架实现连续尺度重建;3)无需额外先验知识即可生成任意分辨率图像。该轻量级模型特别适合资源受限的无人机平台部署。
2025-08-06 15:39:11
1005
原创 DC-Mamba:一种用于热红外无人机图像盲超分辨率的退化感知跨模态框架
摘要 本文提出DC-Mamba框架解决无人机热成像超分辨率问题。该方法创新性地融合退化感知与跨模态特征,通过三个关键技术提升重建质量:1)设计自监督退化感知模块,提取并利用图像退化信息指导重建;2)引入视觉优化的状态空间模型(VFSSM),有效捕捉长距离空间依赖关系;3)构建三级跨模态融合框架,从交互、细化和增强三个层面整合可见光图像特征。实验证明,该方法在多个评估指标上优于现有SOTA方法,能有效恢复热图像的细节信息,尤其适用于无人机高空拍摄场景中的运动模糊和大气湍流等复杂退化情况。 关键词:热图像超分辨
2025-08-04 16:37:25
813
原创 渐进式配准-融合协同优化A-Mamba网络:面向深度未配准高光谱与多光谱图像融合
本文提出了一种渐进式配准-融合协同优化A-Mamba网络(PRFCoAM),用于解决深度未配准高光谱与多光谱图像融合问题。该方法通过迭代优化的模态对齐渐进配准-融合(MAPRF)模块,实现了从粗到细的层次自适应变形校正和融合结果优化。MAPRF模块包含模态统一局部感知配准(MULAR)块和交互注意Mamba融合(IAMF)块,前者通过自适应学习退化函数实现图像模态统一和局部偏移修复,后者利用多方向扫描和注意力机制有效捕获全局特征。实验表明,PRFCoAM能灵活处理不同程度的非刚性变形,在保持计算效率的同时实
2025-07-21 17:07:33
733
原创 DRT-Net: Dual-Branch Rectangular Transformer with Contrastive Learning
本文提出DRT-Net,一种基于双分支矩形Transformer和对比学习的高光谱超分辨率方法。针对现有技术存在的三大局限性:1) CNN难以实现跨模态交互,传统Transformer无法建模长距离方向依赖;2) 多尺度融合缺乏自适应特征选择;3) 光谱保留不足的问题,DRT-Net通过三个创新模块实现突破:双分支矩形Transformer(DTR)利用交叉注意力增强空间-光谱特征交互;尺度自适应特征聚合(SAFA)动态选择多尺度特征;对比增强光谱恢复(CESR)机制通过对比学习确保光谱保真度。实验表明,该
2025-07-09 12:17:37
867
原创 An Asymptotic Multiscale Symmetric Fusion Network for Hyperspectral and Multispectral Image Fusion
摘要: 针对高光谱图像(HSI)空间分辨率不足的问题,本文提出一种渐进多尺度对称融合网络(AMSF-Net),用于高光谱与多光谱图像(MSI)融合。该网络包含多级特征融合(MFF)模块和渐进跨尺度空间感知(PCP)模块,通过分层交互补偿HSI的空间细节和MSI的光谱信息。MFF模块实现多尺度空间-光谱模态交互,PCP模块利用双向条形卷积和跨尺度连接细化边缘特征。在CAVE等四个数据集上的实验表明,AMSF-Net在RMSE、ERGAS和SAM指标上分别比次优方法提升9.1%、12.5%和5.1%,有效解决了
2025-07-07 15:43:22
955
原创 RAMSF: A Novel Generic Framework for Optical Remote Sensing Multimodal Spatial–Spectral Fusion
摘要: 本文提出了一种通用光学遥感多模态空谱融合框架RAMSF,旨在解决现有方法在空间细节表征粗糙和空谱特征对齐不精确方面的局限性。RAMSF将融合过程分解为细节重建(LHSDR)和特征对齐(CSFPA)两个阶段:LHSDR通过低频驱动高频的方式分层重建显著空间细节;CSFPA在连续域中建立坐标模态关系以精确对齐空谱特征。实验表明,该方法在三种融合任务(MSIP、HSIP、MHIF)的十个数据集上均表现出优异的性能和泛化能力,参数设置统一且效率较高,显著优于现有最先进方法。
2025-07-02 17:00:20
811
原创 CESFusion: Cross-Frequency Enhanced Spatial–Spectral Fusion Network
CESFusion:基于跨频率增强的空谱融合网络的高光谱与多光谱图像融合新方法 本文提出了一种创新的高光谱(HSI)与多光谱(MSI)图像融合方法CESFusion,通过融合频域与空谱特征提升性能。该方法包含三个关键模块:(1)跨频率融合模块(CFFM)利用傅里叶变换进行频域全局分析,增强全局感知能力;(2)基于状态空间模型的光谱建模模块(SpeMM)以线性复杂度捕获长距离光谱依赖性;(3)跨域交互模块(CDIM)促进空谱与频域特征的互补交互。与传统方法不同,CESFusion首次强调了频域信息在HSI-M
2025-06-25 16:38:41
924
原创 MDAS: a new multimodal benchmark dataset for remote sensing
本文介绍了MDAS多模态遥感数据集,包含德国奥格斯堡市的合成孔径雷达(SAR)、多光谱、高光谱影像、数字表面模型(DSM)及地理信息系统(GIS)数据,所有数据均于2018年5月7日同步采集。该数据集为解决遥感领域三大典型任务提供了基准:1)分辨率增强,挑战算法处理不同传感器间的空间-光谱响应差异;2)光谱解混,要求算法解决高光谱影像中的混合像元问题;3)土地覆盖分类,验证多源数据融合的有效性。相比现有数据集,MDAS的独特价值在于:a)同步采集五类互补数据;b)包含真实传感器模拟数据而非简单降采样;c)提
2025-06-25 15:55:02
648
原创 A spatial-frequency dual-domain implicit guidance method for hyperspectral and multispectral
本文提出了一种基于柯尔莫哥洛夫-阿诺德网络(KAN)的空频双域隐式引导采样网络(SFIGNet),用于高光谱与多光谱图像融合。该方法通过KAN驱动的编码器将输入图像映射到深层潜在空间,分别在空间域和频域进行隐式引导采样,最终融合生成高分辨率高光谱图像。实验结果表明,在多个数据集上,SFIGNet在4×、8×和16×缩放因子下的融合精度优于主流方法,平均PSNR分别提升1.14dB、1.01dB和0.75dB。同时,该网络参数仅为对比方法的32%,实现了高精度和轻量化的平衡。
2025-06-24 17:17:19
834
原创 Self-Learning Hyperspectral and Multispectral Image Fusion
本文提出了一种自学习自适应残差引导子空间扩散模型(ARGS-Diff)用于高光谱与多光谱图像融合。该方法仅需观测图像而不依赖额外训练数据,通过设计轻量级光谱和空间扩散模型分别从低分辨率高光谱图像(LR-HSI)和高分辨率多光谱图像(HR-MSI)中学习光谱和空间分布。在反向扩散过程中,利用这两个模型从光谱基和降维系数两个低维分量重建高分辨率高光谱图像(HR-HSI)。创新性地引入自适应残差引导模块(ARGM),通过残差引导函数优化两个分量,显著提升了采样过程的稳定性。实验结果表明,该方法在性能和计算效率上均
2025-06-24 16:07:56
710
原创 深入理解 Mamba:从SSM到SSSM的公式推导
Mamba:一种高效处理长序列的新型状态空间模型 Mamba模型突破传统序列建模瓶颈,通过状态空间模型(SSM)实现线性时间复杂度的长序列处理。其核心创新在于将连续系统离散化,并通过动态参数调整适应时变数据特性。相比RNN和Transformer,Mamba兼具O(n)计算效率和长距离依赖建模能力。模型采用零阶保持法实现离散化转换,并引入时变参数Bt和Ct,使系统能动态适应语音、金融等时序数据的瞬时变化,同时保持基础矩阵A的稳定性。这种设计使Mamba在保持运算可追溯性的同时,实现了对时变序列的高效建模。
2025-06-23 17:15:34
1639
原创 IEEE文献引用格式脚本
在写作论文写作过程中,如果引入的是非IEEE的期刊,但是你又需要投IEEE的期刊,那么你最后参考文献的引用格式就得和IEEE的保持一致,由于本人较懒,并秉持着能用脚本解决的事情,绝对不动手一个一个弄,因此,整了个python脚本对参考文献格式进行转换。
2024-06-27 14:41:42
1047
原创 docker容器配置mamba环境
在深度学习中,环境的配置尤其令人头痛,因为不同作者的实际运行的环境都各不相同,一旦需要运行别人的代码首先得看自己的设备是否符合,但大多数都是都是不一致的,当cuda版本大致相同的前提下,利用anaconda的虚拟环境就可以解决大多数问题。但是,当一个老机器的老环境,遇上新技术,新的cuda,新的pytorch等一套组合拳,你只能重新装cuda版本,一旦在安装过程中,动了之前的环境的依赖,那么恭喜你,你的环境就会出现各种乱七八糟的问题,导致之前的代码和现在的代码运行都出现问题,直接原地GG。
2024-06-27 14:14:52
2172
1
原创 C++:基于多态的职工管理系统,增加重复员工编号的判定,增加清除文件时输入错误的错误提示,解决员工岗位输入错误导致的程序崩溃。
C++:基于多态的职工管理系统,增加重复员工编号的判定,增加清除文件时输入错误的错误提示,解决员工岗位输入错误导致的程序崩溃。
2023-04-22 15:35:37
443
原创 expected ‘{‘ before ‘_GLIBCXX_VISIBILITY‘ 错误
c++ Vscode expected ‘{‘ before ‘_GLIBCXX_VISIBILITY‘ 错误解决
2023-04-08 21:11:11
255
原创 RuntimeError: diff_view_meta->output_nr_ == 0 INTERNAL ASSERT FAILED at \“..\\\\torch\\\\csrc\\\\aut
RuntimeError: diff_view_meta->output_nr_ == 0 INTERNAL ASSERT FAILED at "..\\torch\\csrc\\autograd\\variable.cpp":417, please report a bug to PyTorch.
2022-11-16 15:17:51
959
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人