HotpotQA数据集探索与使用

本文介绍了HotpotQA数据集的结构,包括每个样本的最多10篇context和每篇context的句子限制。此外,还分析了数据尺寸、单句及文本长度分布,并指出存在脏数据的问题。在评估模型性能时,提到了使用bert_ucased_qa进行预测的准确率。理想的模型应包含embedding模块、文本过滤模块和解答层。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单个样本结构

在这里插入图片描述


数据分析

数据尺寸
每个样本将最多有10篇context,每篇context最多有85个句子,每个句子分割后最大长度为951。
单句和文本长度分布图
在这里插入图片描述
支持句集的文本长度
在这里插入图片描述

脏数据
有些样本提的支持句对应索引超过原文本句子个数,第一个数据表示支持句索引,第二个数据为对应文本的句子个数
在这里插入图片描述


仅考虑supporting facts时,使用 bert_ucased_qa的预测准确率

在这里插入图片描述

榜单数据</

### HotpotQA 数据集概述 HotpotQA 是一个多跳问答(Multi-hop Question Answering)的数据集,其设计目的是为了促进能够理解并整合来自多个文档信息以回答复杂问题的人工智能模型的发展[^2]。该数据集不仅具备多样性、可解释性的特点,还公开透明,有助于学术界和工业界的深入研究。 #### 特征描述 - **多源信息融合**:不同于单文档抽取型问答任务,HotpotQA中的问题是基于两个或更多支持事实构建而成,这些支持事实可能分布在不同的文档中。 - **丰富的语义表达**:涵盖了广泛的自然语言现象,包括但不限于因果关系推理、数值计算以及实体间的关系推断等高级认知能力的要求。 - **高质量标注**:每条记录都包含了人工精心编写的答案和支持性证据链路,确保了训练样本的质量可靠性。 - **开放领域挑战**:涉及广泛的主题范围,使得模型必须学会处理各种类型的背景知识才能有效作答。 ### 使用方法说明 对于希望利用此资源来改进现有系统的开发者而言,可以通过如下方式着手: 1. 安装必要的库文件,比如PyTorch用于神经网络建模,SpaCy负责文本预处理等工作; 2. 下载官方发布的JSON格式原始资料包,并解析成易于访问的形式; 3. 设计适合特定应用场景的任务定义,例如简单检索、复杂逻辑推理或是两者兼而有之; 4. 构建原型系统,在此基础上不断迭代优化直至满足预期性能指标为止。 ```python import json from transformers import BertTokenizer, BertForQuestionAnswering tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') with open('./hotpot_train_v1.1.json', 'r') as f: dataset = json.load(f) for data in dataset[:5]: question = data['_question'] context = " ".join([doc['context'] for doc in data['_context']]) inputs = tokenizer.encode_plus(question, context, return_tensors='pt') start_scores, end_scores = model(**inputs) ``` 上述代码片段展示了如何加载预训练BERT模型并对HotpotQA部分样例执行基本编码过程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值