视觉AI
打工人
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于中心点预测的视觉评估与可视化流程
这段脚本提供了一个简单但实用的目标中心点评估与可视化框架。相比只依赖数值结果,图像级别的直观反馈更利于发现问题、调优模型。如果你正在调试跟踪模型,不妨试试把它接入你的 pipeline 中。原创 2025-05-15 18:11:42 · 224 阅读 · 0 评论 -
使用 SiamMask 实现单目标逐帧跟踪与掩码中心提取
加载 SiamMask 模型与配置文件读取首帧标签并初始化跟踪器逐帧读取图像并执行提取目标掩码并计算其中心点输出每帧的目标中心坐标。原创 2025-05-15 18:21:27 · 109 阅读 · 0 评论 -
跑通官方 SiamMask Demo 全流程实战
完成以上 1 到 8 步,你即可在本地无缝跑通官方 SiamMask Demo,实现视频中目标的实时跟踪与像素级分割。后续可将其集成到更大系统或作为研究基线进行二次开发。祝你在视频跟踪与分割方向取得更多进展!原创 2025-05-07 15:12:53 · 81 阅读 · 0 评论 -
基于SiamFC的红外目标跟踪
初始化阶段:在第一帧中,通过用户标注获得目标框,从目标区域中提取一个固定大小的模板(称为 exemplar)。搜索阶段:在后续帧中,在以当前目标中心为中心的较大区域(称为 instance)内进行搜索,将模板与搜索区域通过卷积操作得到响应图。位置更新:在响应图中找到峰值位置,并转换到原图坐标,用以更新目标中心。部分实现中还会考虑多尺度搜索和目标尺寸更新。import cv2# 定义 SiamFC 简易网络(示例)# 特征提取部分,注意红外图像通常为单通道,使用较少的卷积核数提高实时性。原创 2025-04-09 09:41:06 · 537 阅读 · 0 评论 -
配置#include “nlohmann/json.hpp“,用于处理json文件
include “nlohmann/json.hpp” // 需要安装 nlohmann/json.hpp 头文件下载链接:https://github.com/nlohmann/json/tree/develop1.下载并解压:首先,需要从nlohmann/json的GitHub仓库下载源代码,并解压得到的文件。地址:2.拷贝头文件:解压后,会得到一个名为include的文件夹,将该文件夹下的所有文件拷贝到的工程文件夹下。原创 2025-02-07 16:58:46 · 737 阅读 · 0 评论 -
基于局部对比度(LCM)的红外弱小目标检测之背景抑制
红外弱小目标检测跟踪算法研究https://blog.csdn.net/Hilaryw/article/details/137232793https://blog.csdn.net/hilaryw/category_12556265.htmlLocal Contrast Measure(LCM)该方法实现过程一句话就可以概括:增强图像中的小目标区域,同时抑制图像中的背景区域。问题一:你怎么知道图像哪部分是小目标区域,哪部分是背景区域?问题二:怎么增强又怎么抑制呢?…如何识别出小目标呢?没错,你正是通过小目原创 2024-04-17 16:26:46 · 815 阅读 · 0 评论 -
使用pytorch搭建lstm时间序列预测
前言:网上找的代码是keras以tensorflow为后端的,苦于不知道具体版本号,所以各种报错,所以参考网上的代码将其修改为基于pytorch的。后来想明白了,除了前八个数没有,其他数经过迭代,Y里面都包含了,所以观察上面两个图,会发现第二幅图比第一幅图少了前面一截数据图。我的疑问,time_step = 8,意味着每8个数据预测下一个数据,为什么预测后的图画出来和原始数据的形状一直呢?3,data[:,0] data[1,:]的含义。下图是归一化后的原数据和预测数据。下图是没有归一化过的原数据。....原创 2022-08-11 15:50:37 · 7401 阅读 · 6 评论 -
vs2019配置opencv,解决报错“无法打开源opencv2/opencv.hpp”
在GitHub中,除了存放着正式版本的opencv的主仓库和新增加的“opencv_extra”仓库以外,opencv3中还添加了一个名为“opencv_contrib”的全新仓库,该仓库包括很多让人兴奋的功能:脸部识别,文本探测,文本识别,新的边缘检测器,充满艺术感的图像修复,深度地图处理,新的光流和追踪算法等。在2.0时代,opencv增加了新的平台支持,包括iOS和Android,通过CUDA和openGL实现了GPU加速,为Python和Java用户提供了接口。//不加这个,会出现退出异常。原创 2022-10-19 16:03:08 · 5374 阅读 · 0 评论 -
「Masked Autoencoders」MAE算法相关及后续工作整理
(MAE, Kaiming He et al.)由于其从丰富的未标记数据中学习有用表示的能力而重新引起了人们的兴趣。直到最近,MAE及其后续工作已经推进了最先进的技术,并在研究(特别是视觉研究)中提供了有价值的见解。在这里,列出了MAE之后或同时进行的几项后续工作,以启发未来的研究。原创 2023-04-07 16:32:06 · 2019 阅读 · 0 评论 -
基于python实现相关模板匹配跟踪之SSDA算法
相关模板匹配跟踪和质心跟踪都是传统算法,相较于AI算法,具有极快的处理速度,在空天背景下跟踪效果不错,适合在FPGA硬件上进行部署。本文分享了一种基于python实现相关模板匹配之SSDA算法。 相关模板匹配跟踪和质心跟踪的区别是:模板匹配在一定区域内搜索匹配位置,可以任意指定跟踪区域,比如只跟踪无人机的左翼,实现定点打击;质心跟踪只能跟踪整个目标的质心位置,而这个质心,不一定我们想打击的点。原创 2022-12-29 14:16:38 · 984 阅读 · 0 评论 -
配置Python版本的目标跟踪算法KCF,支持手动画框
配置Python版本的adaptive kcf,使用笔记本摄像头,支持手动画框,版本1:使用opencv自带的kcf跟踪库1,opencv python的下载地址2,安装指令3,代码版本2:使用Python自己写的kcf1,代码结构:请参考下面的结构存放文件2,接下来贴每一个py文件中的代码kcftracker.pyfog.pyrunhandrec.py版本1:使用opencv自带的kcf跟踪库1,opencv python的下载地址https://www.lfd.uci.edu/~gohlke/py原创 2022-05-24 09:04:29 · 1325 阅读 · 0 评论 -
基于python-opencv实现的质心跟踪算法
质心法相较于AI算法,具有极快的处理速度,在空天背景下跟踪效果不错。本文分享了一种基于轮廓提取的单目标质心跟踪算法和一种基于AI检测的多目标质心跟踪算法原创 2022-12-19 17:42:50 · 2104 阅读 · 2 评论