简谐振动|Python绘制拍与李萨如图形

本文探讨了简谐振动的合成,包括同方向、同频率和不同频率的情况,以及李萨如图形的生成。通过Python进行数据可视化,展示了同相位、反相位和其他情况的振动合成,并详细解释了拍和垂直振动合成,特别是不同频率时的李萨如图案。附带相关代码供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


相关的代码我们附在了文章后,感兴趣可以自行参考。


1. 两个同方向、同频率的简谐振动的合成

a. 同相位的情况

在这里插入图片描述

b. 反相位的情况

在这里插入图片描述

c. 其它情况

在这里插入图片描述


2. 两个同方向、不同频率的简谐振动的合成:拍

在这里插入图片描述


3. 两个相互垂直的简谐振动的合成

a. 同频率的情况

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

b. 不同频率的情况:李萨如图形

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

附加代码

from math import pi,cos
import matplotlib.pyplot as plt
import numpy as np

ts = np
<think>好的,我需要帮用户找到关于简谐振动合成的Python代码示例。用户提到了李萨如图形,这可能和两个垂直简谐振动的合成有关。根据引用[3],里面提到了用Python生成李萨如图形的代码,特别是lissajous函数,这可能就是用户需要的。 首先,我应该回顾引用中的内容。引用[3]提到,lissajous函数使用两个偏振值x和y,x轴用sin函数,y轴也是正弦波,但相位差是随机的。代码中涉及生成动画,每一帧更新相位,并用点绘制图形。这可能就是简谐振动合成的例子。 接下来,我需要确保代码示例符合用户的要求。用户需要的是两个简谐振动的合成,这可能对应李萨如图形的生成。代码应该包括参数设置、振动方程的计算以及图形的绘制。同时,用户可能需要生成动态图,比如GIF,所以可能需要用到matplotlib的动画模块。 然后,我要检查引用中的信息是否足够构建代码示例。引用[3]提到使用SetColorIndex来染色点,但具体在Python中可能需要用matplotlib的plot函数或者scatter。另外,生成GIF可能需要使用FuncAnimation和保存为gif的功能。 可能需要注意参数,比如频率比、振幅、相位差,这些都是李萨如图形的关键参数。例如,不同的频率比会产生不同的图形,用户可能需要调整这些参数来观察效果。 最后,确保代码正确无误,语法正确,并解释代码的关键部分,如振动方程、参数设置和动画生成。同时,根据用户的要求,生成相关问题,帮助用户进一步学习。</think>以下是一个基于李萨如图形简谐振动合成Python代码示例,结合了参数化设计和动画生成: ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation # 设置振动参数 A = 1.0 # x轴振幅 B = 1.0 # y轴振幅 freq_ratio = (3, 2) # 频率比 delta = np.pi/4 # 相位差 # 创建画布 fig, ax = plt.subplots(figsize=(6,6)) ax.set_xlim(-1.2,1.2) ax.set_ylim(-1.2,1.2) line, = ax.plot([], [], lw=2) # 初始化函数 def init(): line.set_data([], []) return line, # 动画更新函数 def update(frame): t = frame * 0.02 # 时间参数 x = A * np.sin(freq_ratio[0] * t + delta) y = B * np.sin(freq_ratio[1] * t) line.set_data(x, y) return line, # 生成动画 ani = FuncAnimation(fig, update, frames=200, init_func=init, blit=True) # 保存为GIF(需要安装imagemagick) ani.save('lissajous.gif', writer='imagemagick', fps=30) plt.show() ``` 代码说明: 1. 参数设置部分定义了x/y方向的振幅$A,B$、频率比$freq\_ratio$和相位差$\delta$,这些参数控制图形形状 2. 通过正弦函数$sin(ωt+φ)$实现简谐振动合成[^2] 3. 动画展示随时间变化的振动轨迹,最终生成李萨如图形[^3]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值