使用scikit-learn对数据进行预处理

数据预处理在机器学习中至关重要,包括缺失值处理、标准化、线性缩放、非线性变换、正则化、特征编码、离散化等。scikit-learn的preprocessing子模块提供了多种预处理方法,如使用StandardScaler进行标准化,MinMaxScaler进行线性缩放,以及LabelEncoder进行特征编码等。通过对数据的这些预处理操作,可以提高模型的性能和数据的可用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注”生信修炼手册”!

数据的质量决定了模型的上限,在真实的数据分析中,输入的数据会存在缺失值,不同特征的取值范围差异过大等问题,所以首先需要对数据进行预处理。

预处理是数据挖掘的第一步,该步骤实际上包含了很多不同的操作手法,大致分为以下几类

1. 缺失值的处理,当样本量很大,缺失值很少时,直接删除缺失值对应的样本,并不会导致样本规模的大幅下降,此时直接删除缺失值是一种可取的办法,但是对于小样本量,且缺失值较多的场景,就需要考虑对缺失值进行插补

2. 标准化,很多的机器学习算法对特征的分布是有预定的假设的,比如需要服从正态分布,对于不符合分布的数据,需要进行标准化,转化为正态分布,另外,考虑到不同特征的量纲不同,也需要进行缩放,比如到缩放到0到1的区间,保证了不同特征在模型中的可比性

3. 稀疏化,也叫做离散化,指的是根据业务场景对特征进行分段处理,比如按照某个阈值,将考试分数划分为及格和不及格两类,从而将连续性的数值变换为0,1两个离散型的变量

4. 特征编码,对于分类变量,近期映射为数值型

5. 特征提取,适用于自然语言处理,图形识别领域的机器学习,因为原始的数据数据是文本,图像等数据,不能直接用于建模,所以需要通过特征提取转换为适合建模的矩阵数据

在scikit-learn中,在preprocessing子模块中提供了多种预处理的方法,具体用法如下

1. 标准化

标准化的目标是使得变量服从标准正态分布,标准化的方式如下

代码如下

>>> from sklearn import preprocessing
>>> import numpy as np
>>> x = np.array([1, -2, 3, -4, 5, 6]).reshape(-1, 1)
>>> x
array([[ 1],
       [-2],
       [ 3],
       [-4],
       [ 5],
       [ 6]])
>>> scaler = preprocessing.StandardScaler().fit(x)
>>> x_scaled = scaler.transform(x)
>>> x_scaled
array([[-0.13912167],
       [-0.97385168],
       [ 0.41736501],
       [-1.53033836],
       [ 0.97385168],
       [ 1.25209502]])
```

2.  线性缩放

适合针对标准差很小的数据集进行处理,根据数据的最大值和最小值,将原始数据缩放到0到1这个区间代码如下

>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> x_scaled = min_max_scaler.fit_transform(x)
>>> x_scaled
array([[0.5],
       [0.2],
       [0.7],
       [0. ],
       [0.9],
       [1. ]])

也可以通过feature_range参数设定具体的缩放区间

>>> min_max_scaler = preprocessing.MinMaxScaler(feature_range=(-5, 5))
>>> x_scaled = min_max_scaler.fit_transform(x)
>>> x_scaled
array([[ 0.],
       [-3.],
       [ 2.],
       [-5.],
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值