安全领域知识图谱建设与典型应用场景

安全知识图谱是网络安全领域专用知识图谱,也是知识图谱应用于安全业务的重要工业尝试。当前,安全领域中存在大量的业务数据,建模需求以及应用需求,了解安全领域知识图谱的建设方法以及典型应用场景,具有重要意义。

本文主要对《安全知识图谱技术白皮书》一文进行解读和总结介绍,对于安全领域的朋友可以重点关注。

一、安全知识图谱概述

安全知识图谱作为一种实体和概念等安全知识的高效组织形式,能够发挥其知识整合的优势,将零散分布的多源异构的安全数据组织起来,为网络安全空间的威胁建模、风险分析、攻击推理等提供数据分析和知识推理方面的支持。

例如,上图展示了一个典型的安全知识图谱,由网络和安全知识库、情报库、资产库、行为日志中关键实体(概念)及关系构建而成。

二、安全知识图谱的数据类型与开放本体

一个典型的安全知识图谱构建流程主要包括以下几个步骤,包括数据来源、本体设计、图谱构建以及图谱应用等环节,下图展示了技术流程图。

1、主要数据来源

安全知识图谱的数据为多源异构数据,不仅来自多个不同来源,而且有混合型数据(包括结构化和非结构化)和离散性数据(分布在不同的系统或平台的数据)。

数据来源包括企业内部和互联网数据,其中:

企业内部信息系统本身每天产生海量的检测数据,而攻击者的操作行为也隐藏在系统自身记录的审计日志和网络流量数据中。

互联网数据包括开源情报、安全论坛发布的信息和网络公布的安全报告等。

2、主要数据形式

从数据结构上看,安全数据包括结构化数据、半结构化数据以及结构化数据。

首先,常见的结构化数据包括漏洞(CVE)、攻击模式(CAPEC)、知识数据库等知识以及从传感器收集的网络资产和终端日志等数据。通常存储在关系型数据库中,授权后可以直接获取。

其次,半结构化数据包含日志文件、 XML 文档、 JSON 文档、 Email ,权威机构发布的威胁情报 (STIX)、开源威胁指标 OpenIOC。

最后,非结构化数据包括文本数据,如漏洞描述、恶意软件分析报告、攻击组织分析报告, 安全热点事件等信息,来自于网络安全机构研究报告、社交媒体、安全社区博客及供应商公告、APT 报告、威胁分析报告、博客、推特和文档数据。主要依赖于手工收集和自动化爬虫,在获取开源数据时尽量选择可靠的数据源,例如权威安全研究机构来保证信息可信度,然后利用爬虫技术采集威胁情 报网站上特定格式的 IOC 描述,安全研究机构发布的威胁组织分析报告等。

详细请看如下:

安全领域知识图谱建设与典型应用场景

### 知识图谱结合协同过滤算法的特点及应用场景 知识图谱协同过滤算法的结合能够显著提升推荐系统的性能,尤其是在解决传统协同过滤存在的问题以及增强推荐结果的可解释性方面表现出独特的优势。以下是两者结合的主要特点及其典型应用场景: #### 特点一:改善数据稀疏性和冷启动问题 传统的协同过滤算法面临严重的数据稀疏性和冷启动问题,这些问题源于新用户或新物品缺乏足够的历史行为数据支持。通过引入知识图谱,可以利用实体间的语义关系补充缺失的信息。例如,如果某个用户的偏好无法直接从其有限的行为记录中推断出来,那么可以通过知识图谱中的隐含关系(如类别层次、属性关联等)间接推测该用户的兴趣倾向[^1]。 #### 特点二:提供更丰富的上下文信息 知识图谱本质上是一个富含语义信息的结构化网络,它不仅可以捕捉显式的用户-物品交互模式,还能挖掘深层次的背景知识。比如,在电影推荐场景下,除了考虑观看过的影片列表外,还可以综合演员阵容、导演风格甚至剧情主题等因素共同作用于最终决策过程之中[^2]。 #### 特点三:增加推荐结果透明度和可信度 相比单纯依赖统计规律得出结论的传统方式来说,融入了知识图谱元素后的新型框架允许我们清楚地看到为什么某项商品会被建议给特定个体的原因所在 – 因为整个推理链条都可以追溯至具体的事实依据之上 。这极大地促进了用户体验满意度的同时也提高了业务运营效率 [^4]。 --- ### 应用场景分析 #### 场景一:电子商务平台个性化营销策略优化 在线购物网站常常面临着海量SKU库存管理和精准触达目标客户群体两大难题。借助于融合版方案所提供的强大洞察力可以帮助商家更好地理解消费者需求特征,并据此制定差异化的促销计划;此同时也能有效降低退货率等相关成本支出风险 [^3]。 #### 场景二:社交网络好友圈层划分内容分发机制调整 社交媒体作为人们日常生活中不可或缺的一部分承担着连接彼此情感纽带的功能使命。然而随着规模不断扩大势必带来噪音干扰加剧的现象发生。此时运用此类先进技术手段便显得尤为重要 —— 不仅可以从宏观层面描绘出整体社区生态分布状况而且针对每一个独立账号都能定制专属信息服务体验 [^2]。 #### 场景三:教育科技领域智能化教学辅助工具研发 在智慧课堂建设进程中迫切需要一套科学合理的评价体系用来衡量学生的学习成效并及时给予反馈指导方向。凭借这一创新思路所打造出来的解决方案正好满足上述诉求 :一方面依托详尽的知识脉络梳理帮助教师快速定位薄弱知识点加以重点讲解说明 ;另一方面则鼓励学员主动探索未知领地激发潜能无限可能 [^1]。 ```python # 示例代码片段展示了如何加载预先训练好的嵌入向量以供后续计算使用 import numpy as np def load_kg_embeddings(file_path): """ 加载由知识图谱生成的实体嵌入向量文件 参数: file_path (str): 文件路径 返回: dict: 键值分别为实体ID对应低维空间坐标表示的对象字典 """ embeddings = {} with open(file_path, 'r') as f: lines = f.readlines() for line in lines: parts = line.strip().split('\t') entity_id = int(parts[0]) vector = list(map(float, parts[1:])) embeddings[entity_id] = np.array(vector) return embeddings ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI知识图谱大本营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值