【NLP】tensorflow进行中文自然语言处理中的情感分析

本文介绍如何使用词向量模型将汉字文本转换为计算机可处理的数据,并构建LSTM神经网络模型。涉及numpy、jieba、gensim、tensorflow和matplotlib等库的使用,以及RNN、GRU和LSTM等概念的讲解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要的库

  • numpy
  • jieba
  • gensim
  • tensorflow
  • matplotlib
词向量模型

在这个词向量模型里,每一个词是一个索引,对应的是一个长度为300的向量,我们今天需要构建的LSTM神经网络模型并不能直接处理汉字文本,需要先进行分次并把词汇转换为词向量,步骤请参考下图,步骤的讲解会跟着代码一步一步来,如果你不知道RNN,GRU,LSTM是什么,我推荐deeplearning.ai的课程,网易公开课有免费中文字幕版,但我还是推荐有习题和练习代码部分的的coursera原版:
在这里插入图片描述
在这里插入图片描述

参考链接I
代码链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值