Aspect Based Sentiment Analysis (ABSA)

基于属性的情感分析(ABSA)是文本分析任务,涉及提取意见和属性及其关系。训练包括文本预处理、依赖性解析和词典获取算法。推理阶段则检测属性-意见对。ABSA技术包括方面类别识别和情感极性判别,适用于多标签分类、种子词扩展和主题模型等方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于属性的情感分析(Aspect Based Sentiment Analysis)是一种在给定的语料库中同时提取(co-extracting )表达意见和(事物)属性/方面术语(意见目标)以及它们之间的关系的任务。

算法概览

训练训练阶段输入训练数据,并输出意见词典(opinion lexicon)和属性词典(aspect lexicon) 总体说来,训练流程包括以下三个主要步骤:

  • 1.第一个训练步骤是由Spacy执行的文本预处理。 此步骤包括标记化(tokenization)、词性标注(part-of-speech tagging)和语句切割(sentence breaking)。
  • 2.第二个训练步骤是将依赖性解析器应用于训练数据。 为此,我们使用了论文1中描述的解析器。有关步骤1和2的更多详细信息,请参阅BIST依赖解析器。
  • 3.第三步是基于使用论文2中描述的bootstrap词典获取算法(a bootstrap lexicon acquisition algorithm),该算法使用由论文3引入的通用词典(a generic lexicon)作为bootstrap过程的初始步骤。
  • 4.最后一步包括应用基于MLP(多层感知器)的意见词组重新排序(opinion term re-ranking )和极性估计算法(polarity estimation algorithm)。 此步骤基于使用每个获取的词组(each acquired term)之间的词嵌入相似性(word embbedding similarities),以及一系列的通用观点词组(generic opinion terms)作为特征。提供预先训练的模型重新排序。

推理:推理阶段输入待推理数据以及训练阶段生成的意见词典(opinion lexicon)和属性

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值