信息增益,信息增益率,信息熵,互信息,交叉熵,条件熵,gini系数

本文详细介绍了信息熵、信息增益(ID3)、信息增益率(C4.5)、互信息、点互信息PMI、相对熵(KL散度)、交叉熵、条件熵、联合熵和gini系数在决策树算法中的作用和计算原理。通过这些概念,理解如何评估特征的重要性并构建高效的分类模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(一)信息熵

在这里插入图片描述

(二)信息增益( ID3算法 )

在这里插入图片描述
Gain(A)=I(A) -H(A)
信息增益的理解: 对于待划分的数据集D,其 entroy(前)是一定的,但是划分之后的熵 entroy(后)是不定的,entroy(后)越小说明使用此特征划分得到的子集的不确定性越小(也就是纯度越高),因此 entroy(前) - entroy(后)差异越大,说明使用当前特征划分数据集D的话,其纯度上升的更快。而我们在构建最优的决策树的时候总希望能更快速到达纯度更高的集合,这一点可以参考优化算法中的梯度下降算法,每一步沿着负梯度方法最小化损失函数的原因就是负梯度方向是函数值减小最快的方向。同理:在决策树构建的过程中我们总是希望集合往最快到达纯度更高的子集合方向发展,因此我们总是选择使得信息增益最大的特征来划分当前数据集D
缺点:信息增益偏向取值较多的特征
原因:当特征的取值较多时,根据此特征划分更容易得到纯度更高的子集,因此划分之后的熵更低,由于划分前的熵是一定的,因此信息增益更大,因此信息增益比较偏向取值较多的特征。

(三)信息增益率( C4.5算法 )

信息增益率 = 惩罚参数 * 信息增益

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值