WIN10 + GTX1660Ti配置TensorFlow GPU版本

本文详细介绍如何在Windows10系统上,使用Anaconda安装Python3.7.3,并配置TensorFlow-GPU1.14.0、Cuda10.0及Cudnn7.6.1,包括下载源、安装步骤及测试方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装准备:

         操作系统: Windows 10
  
       Python版本: 3.7.3
        安装Anaconda3-2019.03-Windows-x86_64自带python3.7.3
        下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
        参考链接:https://blog.csdn.net/junchengberry/article/details/81217645
        
        TensorFlow-GPU版本: 1.14.0
        
        Cuda版本: cuda_10.0.130_411.31_win10
        下载地址:https://developer.nvidia.com/cuda-10.0-download-archive
        
        Cudnn版本: cudnn-10.0-windows10-x64-v7.6.1.34.zip
        下载地址:https://developer.nvidia.com/rdp/cudnn-download
       
       清华镜像:
       -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

       conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
       conda config --set show_channel_urls yes

安装过程:

1.安装python
安装anaconda即可

2.安装cuda
在系统变量环境变量中path配置(已经有的不用再次配置):
在这里插入图片描述
在cmd命令窗口中输入

nvcc -V

查看cuda是否安装成功:
在这里插入图片描述
3. 安装Cudnn,解压cudnn-9.0-windows10-x64-v7.zip
将Cudnn包中所带的文件放到Cuda目录(上面的CUDA_PATH的路径)下对应的文件夹即可
Cudnn文件夹下的: bin/cudnn64_7.dll 拷贝到 Cuda文件夹下的 bin/ 目录下
Cudnn文件夹下的: include/cudnn.h 拷贝到Cuda文件夹下的 include/ 目录下
Cudnn文件夹下的: lib/x64/cudnn.lib 拷贝到Cuda文件夹下的 lib/x64/cudnn.lib目录下
(cuda默认安装路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0)

4.安装tensorflow-gpu

pip install tensorflow-gpu==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

5.测试

  import tensorflow as tf
    a = tf.constant(1)
    b = tf.constant(2)
    sess = tf.Session()
    print(sess.run(a + b))

输出为 3

<think>好的,我需要帮助用户确定适合他们NVIDIA GeForce GTX 1660 Ti显卡的CUDA和cuDNN版本。首先,用户使用的是Windows 10系统,显卡是GTX 1660 Ti。我应该从以下几个方面入手: 1. **显卡的Compute Capability**:GTX 1660 Ti属于图灵架构,查一下它的计算能力。记得之前GTX 16系列的计算能力一般是7.5,所以需要确认这一点。 2. **CUDA版本支持**:不同的CUDA版本对计算能力有最低要求。比如CUDA 11.x支持计算能力3.5到8.x,而GTX 1660 Ti的计算能力是7.5,所以理论上支持较新的CUDA版本,但也要考虑用户实际使用的框架如TensorFlow或PyTorch的兼容性。 3. **深度学习框架的版本需求**:用户可能安装CUDA是为了机器学习库。比如TensorFlow 2.10及之前支持CUDA 11.2,而更高版本可能需要CUDA 11.8或12。需要建议用户根据他们使用的框架版本来选择对应的CUDA版本。 4. **cuDNN版本匹配**:cuDNN必须CUDA版本对应,通常官网有对应表格。例如CUDA 11.x对应cuDNN 8.x.x,但具体小版本需要查看NVIDIA的文档。 5. **安装步骤注意事项**:提醒用户先安装显卡驱动,可能需要更新到支持所需CUDA版本的驱动版本,然后安装CUDA Toolkit,最后解压cuDNN文件到指定目录。 6. **验证安装**:建议用户通过nvcc --version检查CUDA,以及运行示例代码确认cuDNN是否安装正确。 可能需要检查NVIDIA官方文档,确认GTX 1660 Ti的计算能力,以及各CUDA版本的支持情况。同时,考虑用户可能没有提到他们使用的深度学习框架,所以需要给出一般性建议,并建议根据框架要求调整。</think>针对您的NVIDIA GeForce GTX 1660 Ti显卡(基于图灵架构,计算能力 **7.5**)和Windows 10系统,以下是CUDA和cuDNN版本的推荐及安装建议: --- ### **1. CUDA版本选择** - **推荐版本**:CUDA 11.x 系列(如 **CUDA 11.8** 或 **CUDA 11.2**)。 - 原因:GTX 1660 Ti支持CUDA 10.1及以上版本,但为了兼容主流深度学习框架(如TensorFlow/PyTorch),建议选择较新的CUDA 11.x。 - **注意**:具体版本需根据您使用的深度学习框架决定: - **TensorFlow ≥2.10**:需CUDA 11.2 ~ 11.8。 - **PyTorch ≥1.8**:支持CUDA 11.x。 - 如果框架版本较旧(如TensorFlow ≤2.9),可能需要CUDA 11.2。 --- ### **2. cuDNN版本选择** - **匹配规则**:cuDNN必须CUDA版本严格对应。例如: - **CUDA 11.8** → cuDNN **8.9.x**([官方表格](https://developer.nvidia.com/cudnn-download-survey)) - **CUDA 11.2** → cuDNN **8.1.x** - 下载前务必查看NVIDIA的[cuDNN支持矩阵](https://developer.nvidia.com/cudnn)。 --- ### **3. 安装步骤** 1. **更新显卡驱动**: - 前往[NVIDIA驱动下载页](https://www.nvidia.com/Download/index.aspx),安装最新Game Ready驱动(确保支持所需CUDA版本)。 - 通过命令 `nvidia-smi` 查看驱动支持的CUDA版本(右上角显示的是驱动可支持的最高CUDA版本)。 2. **安装CUDA Toolkit**: - 访问[CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive),下载推荐的版本(如11.8)。 - 安装时可选“自定义安装”,取消无关组件(如Visual Studio集成,若不需要)。 3. **安装cuDNN**: - 下载对应版本的cuDNN(需注册NVIDIA账号)。 - 将cuDNN的压缩包解压后,复制 `bin`、`include`、`lib` 文件夹到CUDA安装目录(默认路径:`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.x`)。 --- ### **4. 验证安装** - **CUDA验证**: ```bash nvcc --version # 查看CUDA编译器版本 ``` - **cuDNN验证**: - 运行深度学习框架的测试代码(如PyTorch的 `torch.cuda.is_available()`),或参考官方提供的验证方法。 --- ### **5. 注意事项** - **驱动兼容性**:新版CUDA可能需要较新的显卡驱动。若安装失败,尝试更新驱动。 - **框架版本锁**:例如TensorFlow 2.15要求CUDA 11.8,而PyTorch 2.0可能支持CUDA 11.7/11.8,需具体查看框架文档。 - **多版本共存**:可通过环境变量切换不同CUDA版本(如`PATH`中调整路径优先级)。 --- ### **总结方案** - **稳妥选择**:安装 **CUDA 11.8 + cuDNN 8.9.4**,搭配最新NVIDIA驱动。 - **框架适配**:若使用PyTorch,可直接通过`conda install pytorch cudatoolkit=11.8`自动安装依赖。 如有具体深度学习框架版本需求,可进一步调整CUDA版本
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值