01-机器学习之基础环境搭建(conda、CUDA、pycharm)

一、硬件设备

本文机器学习所采用的硬件设备配置如下:
    CPU: i9-12900H
    内存: 32GB
    GPU: NVIDIA RTX4060 (8GB)  

本文相关部分命令基于此配置并且安装CUDA 11.8为基础进行。

本人为机器学习及人工智能方向小白,仅以记录自己学习过程,如有不足之处,欢迎各位大佬指正。

二、操作系统

本文机器学习所采用的操作系统为Windows  

三、环境搭建

当前机器学习大部分都是采用python为主,因此本文也以python环境搭建为入手点,采用Anaconda来搭建python隔离运行环境及相关包管理。

3.1下载Anaconda

Anaconda官网下载Anaconda程序进行安装。

(1)打开官网,如下图所示
备注:文中的界面为2024年09月官网界面,如果您操作时候界面发生变化请以实际为主
Anaconda官网

(2)点击右上角的Free Download进行下载,跳转后页面,可以根据自己的需求判断是否需要注册,如果不希望注册直接下载则点击“skip registration”如下图所示:
Anaconda下载页

(3)选择适合自己系统版本的软件,本文采用的是操作系统是Windows则下载Windows版本的即可,如果您是Linux或Mac,则下载对应版本的。
Anaconda下载具体页面

3.2安装Anaconda

说明:以下界面为Anaconda3-2024.06-1-Windows-x86_64界面,如果您操作时候界面发生变化请以实际为主

(1)运行下载好的exe文件,跳出如下界面,点击“Next”
Anaconda安装001

(2)第一步完成后,跳转到License页面,选择“I Agree”
Anaconda安装002

(3)第二步完成后,跳转到选择给本账户或者所有用户安装页面,建议选择所有用户,如下图所示:
Anaconda安装003

(4)第三步完成后,选择需要安装的目录(此处作者选择安装在D:\Anaconda3),然后点击“Next”
Anaconda安装004

(5)第四步完成后,进入安装选项,一般使用默认即可,点击“Install”
Anaconda安装005

(6)第五步完成后,软件自动进行安装,等待安装完成即可,界面如下:
Anaconda安装006

(7)第六步完成后,跳转界面如下,直接点击“Next”
Anaconda安装007

(8)第七步完成后,跳转界面如下,直接点击“Next”
Anaconda安装008

(9)第八步完成后,跳转界面如下,直接点击“Finish”,至此Anaconda安装完成
Anaconda安装009

3.4安装cuda11.8(如果电脑没有NVIDIA独立显卡可以跳过)

CUDA的安装包需要从英伟达NVIDIA官网进行下载,本文此处采用的CUDA版本为11.8,下载地址为:https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Wind ,后续安装均采用默认值安装。

(1)CUDA会自动检查设备硬件情况
CUDA001

(2)同意CUDA安装协议
CUDA002

(3)选择“精简安装”,并选择下一步
CUDA003

(4)等待系统安装完成
CUDA004
CUDA005

(5)安装完成后点击“下一步”
CUDA006

(6)点击“关闭”
在这里插入图片描述

3.5安装pytorch(conda方式安装)

本文中的pytorch是基于conda方式安装,因此需要先完成安装Anaconda。

(1)打开cmd命令工具输入如下命令,其中下面命令中的D:\Anaconda3是作者安装的目录。

%windir%\System32\cmd.exe "/K" D:\Anaconda3\Scripts\activate.bat D:\Anaconda3

如果您采用的是默认路径安装Anaconda则是C:\ProgramData\anaconda3,采用默认路径安装的命令如下:

%windir%\System32\cmd.exe "/K" C:\ProgramData\anaconda3\Scripts\activate.bat C:\ProgramData\anaconda3

如果您修改过Anaconda安装路径则修改为您安装是选择的路径,把第一行命令中的D:\Anaconda3替换为您的路径即可。

(2)在命令行中输入安装环境的位置(此处作者采用的路径是D:\Anaconda3\envs)

D:
cd D:\Anaconda3\envs

(3)添加清华大学镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

(4)先创建一个conda虚拟运行环境名称为pytorchEnv,此处指定python版本为3.8

conda create --name pytorchEnv python=3.8

(5)激活安装好的虚拟环境pytorchEnv

conda activate pytorchEnv

(6)安装pytorch

以下部分命令仅供参考,具体命令可以根据您电脑具体配置情况,参考pytorch官方网站Start Locally的中的的命令进行。

此处作者采用的是独显并且安装了CUDA11.8,因此命令如下:

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

如果您的电脑没有独立显卡,可以采用CPU安装方式,CPU版命令参考如下:

conda install pytorch torchvision torchaudio cpuonly -c pytorch

3.6安装pycharm community

Jetbrains官网下载Pycharm Community进行安装,安装均采用默认配置,故不再额外放安装过程图。
PyCharm_Community

<think>嗯,用户现在想在PyCharm中配置机器学习环境。之前他们问过如何在Windows上配置机器学习环境,我给了Anaconda安装、虚拟环境创建以及TensorFlow和PyTorch的安装步骤。现在他们转向PyCharm,可能需要指导如何在PyCharm中集成这些已有的环境。 首先,用户可能已经按照之前的教程安装了Anaconda和创建了虚拟环境,比如ml_env。现在他们需要使用PyCharm,所以需要知道如何将PyCharm连接到这个已有的虚拟环境。引用[1]和[2]都提到了在PyCharm中关联虚拟环境,特别是通过选择Python解释器路径。比如,引用[2]提到找到anaconda的envs目录下的python.exe,这可能就是用户需要做的。 然后,用户可能需要安装核心库如NumPy、Pandas,以及深度学习框架如TensorFlow或PyTorch。引用[1]中提到了在PyCharm的终端中使用pip安装TensorFlow-gpu和ITK,但用户的主要需求是机器学习环境,所以可能需要调整,确保安装的是常用库如scikit-learn,以及正确版本的TensorFlow或PyTorch。同时,用户可能需要配置GPU支持,所以在安装命令中应该包含CUDA相关的版本,比如conda安装PyTorch时指定cudatoolkit。 接下来,用户可能需要验证环境是否配置正确,比如检查GPU是否可用,这可以参考引用[1]中的代码示例,导入TensorFlow并运行tf.config.list_physical_devices('GPU')。对于PyTorch,则是使用torch.cuda.is_available()。 用户可能还关心如何管理不同的项目环境,比如在PyCharm中为不同项目配置不同的虚拟环境,这需要指导他们如何在PyCharm中切换解释器。此外,引用[1]和[2]都提到了虚拟环境的关联,所以需要强调这一点的重要性,避免项目之间的依赖冲突。 另外,用户可能希望优化PyCharm的设置,比如配置代码自动补全、安装插件如Scientific Mode来增强数据科学开发体验。还有,配置镜像源来加速下载,这在之前的回答中也有提到,可能需要应用到PyCharm的终端中,比如使用清华源。 最后,用户可能会遇到常见问题,比如PyCharm找不到解释器路径,或者GPU不可用,需要提供解决方案,比如检查环境变量或重新安装CUDA驱动。还要注意版本兼容性,比如TensorFlow与CUDA版本的对应关系,避免安装不匹配的版本导致问题。 总结步骤应该是:安装PyCharm,配置解释器到现有conda环境,安装核心库和框架,验证安装,优化设置,处理常见问题。确保引用之前的回答内容,比如Anaconda的使用,虚拟环境管理,以及镜像源配置,同时结合用户提供的引用中的PyCharm具体操作步骤。</think>### PyCharm机器学习环境配置指南(Windows系统) --- #### 一、环境关联核心步骤 1. **创建/选择虚拟环境** - 使用已有Anaconda环境(推荐): ```bash conda create -n ml_pycharm python=3.9 # 新建专用环境 ``` -PyCharm中关联环境: 1. 打开 `File > Settings > Project: [名称] > Python Interpreter` 2. 点击齿轮图标选择 `Add > Conda Environment` 3. 定位到 `Anaconda3\envs\ml_pycharm\python.exe`[^2] 2. **验证环境关联** 在PyCharm终端执行: ```bash python -c "import sys; print(sys.executable)" # 应显示虚拟环境路径 ``` --- #### 二、核心工具安装 1. **基础科学计算包** ```bash conda install numpy pandas matplotlib scikit-learn -y ``` 2. **深度学习框架选择** - **PyTorch(含GPU支持)**: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` - **TensorFlow GPU版**: ```bash pip install tensorflow-gpu==2.8.0 # 需先安装对应版本CUDA[^1] ``` 3. **开发增强工具** ```bash pip install jupyterlab ipywidgets # 交互式开发支持 ``` --- #### 三、环境验证 1. **GPU加速验证** ```python # PyTorch验证 import torch print(f"PyTorch GPU可用: {torch.cuda.is_available()}") # 应输出True[^2] # TensorFlow验证 import tensorflow as tf print("TF GPU设备:", tf.config.list_physical_devices('GPU')) # 应显示GPU信息[^1] ``` 2. **功能完整性测试** ```python import sklearn print("scikit-learn版本:", sklearn.__version__) # 应显示正确版本 ``` --- #### 四、PyCharm高级配置 1. **开发效率优化** - 启用 `Scientific Mode`(`View > Scientific Mode`) - 安装 `Python Scientific` 插件(支持实时变量查看) 2. **终端优化配置** ```bash # 设置清华镜像源(PyCharm内置终端执行) pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ ``` 3. **项目模板配置** ```python # File > New Project Settings > Settings for New Projects # 预设模板包含常用机器学习库导入语句 ``` --- #### 五、多环境管理方案 | 场景 | 配置建议 | 优势 | |-----------------|----------------------------------|---------------------------| | 基础学习 | 单一环境包含所有基础库 | 简单易用 | | 多框架开发 | 按框架创建独立环境(TF/PyTorch) | 避免版本冲突[^1][^2] | | 项目交付 | 使用requirements.txt固定依赖 | 确保环境可复现 | --- #### 六、常见问题解决 1. **GPU不可用问题** - 检查NVIDIA驱动版本与CUDA版本匹配性 - 验证环境变量是否包含CUDA路径(`CUDA_PATH`) - 尝试重新安装框架的GPU版本: ```bash pip uninstall tensorflow pip install tensorflow-gpu==2.8.0 --force-reinstall ``` 2. **包冲突处理** - 使用 `conda list --revisions` 查看环境变更历史 - 执行环境重置: ```bash conda install --revision 2 # 回退到第2次修订状态 ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值