题目描述:
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。
题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请不要使用除法,且在 O(n) 时间复杂度内完成此题。
示例 1:
输入: nums = [1,2,3,4]
输出: [24,12,8,6]
示例 2:输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]
提示:
2 <= nums.length <= 105
-30 <= nums[i] <= 30
保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内
进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组不被视为额外空间。)
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/product-of-array-except-self
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析:
我不记得剑指offer中这道题既要求了时间复杂度又要求了空间复杂度。之前的做法是,用一个lfet数组,存放从左到右的乘积,一个right数组存放从右到左的乘积。然后遍历nums,对于nums[i]来说,把其左边的乘积left[i]和右边的乘积right[i]相乘,则为answer[i]
但是这道题在要求空间复杂度O(1)的同时,放开了一条路,即答案数组answer不算空间复杂度, 因此,我们可以用answer来暂代right数组的功能,然后利用一个数组leftmul,来依次累乘左边的数字,就可以模拟出left[i]*right[i]。
更详细的分析请看题解,不过题解也是使用了这种类似于钻空子的写法,也是利用了answer数组。题解链接如下:
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int len=nums.size();
// 创建answer数组
vector<int> answer(len);
// 利用answer数组先来存放右边的乘积
// 即answer[i]存放的是nums[i+1]~nums[end]中所有数的乘积
answer[len-1]=1;
for(int i=len-2;i>=0;i--)
answer[i]=answer[i+1]*nums[i+1];
// frontmul存放左边数字的累乘结果
int frontmul=1;
for(int i=0;i<len;i++)
{
// answer[i]=左边数字累乘结果*右边数字的乘积
answer[i]=frontmul*answer[i];
frontmul=frontmul*nums[i];
}
return answer;
}
};