238. 除自身以外数组的乘积

题目描述:

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在  32 位 整数范围内。

请不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]
示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]
 

提示:

2 <= nums.length <= 105
-30 <= nums[i] <= 30
保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在  32 位 整数范围内
 

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组不被视为额外空间。)

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/product-of-array-except-self
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

分析:

        我不记得剑指offer中这道题既要求了时间复杂度又要求了空间复杂度。之前的做法是,用一个lfet数组,存放从左到右的乘积,一个right数组存放从右到左的乘积。然后遍历nums,对于nums[i]来说,把其左边的乘积left[i]和右边的乘积right[i]相乘,则为answer[i]

        但是这道题在要求空间复杂度O(1)的同时,放开了一条路,即答案数组answer不算空间复杂度, 因此,我们可以用answer来暂代right数组的功能,然后利用一个数组leftmul,来依次累乘左边的数字,就可以模拟出left[i]*right[i]。

更详细的分析请看题解,不过题解也是使用了这种类似于钻空子的写法,也是利用了answer数组。题解链接如下:

https://leetcode-cn.com/problems/product-of-array-except-self/solution/chu-zi-shen-yi-wai-shu-zu-de-cheng-ji-by-leetcode-/ 代码如下:

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {
        int len=nums.size();
        // 创建answer数组
        vector<int> answer(len);
        // 利用answer数组先来存放右边的乘积
        // 即answer[i]存放的是nums[i+1]~nums[end]中所有数的乘积
        answer[len-1]=1;
        for(int i=len-2;i>=0;i--)
        answer[i]=answer[i+1]*nums[i+1];
        // frontmul存放左边数字的累乘结果
        int frontmul=1;
        for(int i=0;i<len;i++)
        {
            // answer[i]=左边数字累乘结果*右边数字的乘积
            answer[i]=frontmul*answer[i];
            frontmul=frontmul*nums[i];
        }
        return answer;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值