写在前面
本文内容为两部分:1)我学习《深度学习》时所记笔记,对应内容为书上第八章 2)阅读有关AdaBN的一篇论文时所做的笔记
BN的拓展
由于BN的良好效果,这几年有不少基于BN的工作被报道。自己前几天也阅读了其中一篇,论文标题为REVISITING BATCH NORMALIZATION FOR PRACTICAL DOMAIN ADAPTATION,北京大学的Yanghao Li等人在该论文中提出了一种被称为AdaBN的方法,可以用于不许域之间的迁移学习。
所提出的方法流程如下:
针对AdaBN方法做以下说明:
1、根据论文中所述,该方法提出的motivation是作者在将不同数据集以mini-batch的方式作为带BN层的深度神经网络的输入时,发现BN层对应的均值和方差呈现簇状分布的特性。如下图
因此,作者认为BN层的均值和方差代表了不同域之间的特性。
2、对于提出的算法,实现流程相对简单,即先在训练集(source domain)上训练好一个DNN模型,然后用target domain上的部分数据计算新域上的BN层的mean and variance,即得到μj,δj\mu_j,\delta_jμ<