《深度学习》第八章笔记+AdaBN

本文记录了《深度学习》第八章的学习笔记,并探讨了AdaBN(Adaptive Batch Normalization)方法,该方法由北京大学的研究者提出,用于改善跨领域的迁移学习。AdaBN通过在目标领域上计算新的BN层均值和方差,提高模型在不同数据集上的表现。文章强调了AdaBN应在所有层应用,并且仅需少量目标领域数据即可完成计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

本文内容为两部分:1)我学习《深度学习》时所记笔记,对应内容为书上第八章 2)阅读有关AdaBN的一篇论文时所做的笔记
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述a

BN的拓展

由于BN的良好效果,这几年有不少基于BN的工作被报道。自己前几天也阅读了其中一篇,论文标题为REVISITING BATCH NORMALIZATION FOR PRACTICAL DOMAIN ADAPTATION,北京大学的Yanghao Li等人在该论文中提出了一种被称为AdaBN的方法,可以用于不许域之间的迁移学习。
所提出的方法流程如下:
在这里插入图片描述
针对AdaBN方法做以下说明:
1、根据论文中所述,该方法提出的motivation是作者在将不同数据集以mini-batch的方式作为带BN层的深度神经网络的输入时,发现BN层对应的均值和方差呈现簇状分布的特性。如下图
在这里插入图片描述
因此,作者认为BN层的均值和方差代表了不同域之间的特性。
2、对于提出的算法,实现流程相对简单,即先在训练集(source domain)上训练好一个DNN模型,然后用target domain上的部分数据计算新域上的BN层的mean and variance,即得到μj,δj\mu_j,\delta_jμ<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值