
机器学习#吴恩达
weixin_42766244
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数组和链表的区别
数组和链表是两种基本的数据结构,他们在内存存储上的表现不一样。数组在内存中,数组是一块连续的区域,且存储着相同类型的数据。由于这两个特点,数组具有随机访问的特性。数组需要预留一块连续的内存空间,可能造成浪费。比如预订了10个连续的座位,但是来的人不够10个,那么剩下的位置就浪费了。如果来了11个人,则要么把第11个位置的人移走,要么重新找一个11连坐的座位。插入和删除的效率低。插入数据时,这个位置后面的数据在内存中都要向后移;删除数据时,这个位置后面的数据都要向前移。随机读取数据的效率高。因为数组原创 2020-08-10 01:12:12 · 866 阅读 · 0 评论 -
吴恩达机器学习笔记(七)
7.1 过拟合问题(The problem of overfitting)变量个数不同的情况下,拟合的程度不同。过度拟合问题将会在变量过多的时候出现。过拟合的时候代价函数值会非常接近0甚至为0。第三张图是过拟合状态,这个曲线千方百计地拟合训练集,导致他无法泛化到新样本中。提问:为什么这三条曲线拟合程度不一样?答:与高阶特征有关。特征的次越高,拟合程度越高。泛化:一个假设模型应用到新样本的能力每一个变量看上去都与房价有关,但是当特征变量过多而训练数据过少时,就会出现过拟合问题。提问:数理原创 2020-08-10 01:00:43 · 243 阅读 · 0 评论 -
吴恩达机器学习笔记(六)
6.1 分类(Classification)将线性回归用于分类问题不是一个好主意。红线为增加最右的样本前的拟合,蓝线为增加最右的样本后的拟合。假设阈值为0.5,hθ(x)≥0.5h_\theta(x)\ge0.5hθ(x)≥0.5的情况下(竖线右边)是患有肿瘤,hθ(x)≤0.5h_\theta(x)\le0.5hθ(x)≤0.5的情况下(竖线左边)是没有肿瘤。可以发现,红线很好地拟合样本数据,但是在增加一个样本后,蓝线不能很好地拟合数据。线性回归模型对噪音十分敏感线性回归还会出现hθ(x)原创 2020-08-09 21:53:35 · 453 阅读 · 0 评论 -
吴恩达机器学习笔记(四)
4.1 多功能注意:n 代表特征的数量x(i)x^{(i)}x(i)代表第i个训练样本的特征向量xj(i)x^{(i)}_jxj(i)代表第i个训练样本中第j个特征的值用θ\thetaθ的转置矩阵与训练集样本值的矩阵相乘,在训练集中加多一行样本x0x_0x0,其中值都为1,与θ0\theta_0θ0相乘4.2 多元梯度下降下图中J(θ)J(\theta)J(θ)中的θ\t...原创 2020-03-31 12:19:34 · 204 阅读 · 0 评论 -
吴恩达机器学习笔记(三)
3.1 矩阵和向量Matrix/矩阵:Rectangle array of numbers,由数字组成的矩形阵列。Vector/向量:An n x 1 matrix,只有一列的矩阵。一般大写字母代表矩阵,小写字母代表向量3.2 加法和标量乘法比较简单,就不做笔记了3.3 矩阵向量乘法小技巧使用矩阵向量相乘的方法来计算函数hθ(x)h_\theta(x)hθ(x)的值(参考作业...原创 2020-03-19 11:40:49 · 128 阅读 · 0 评论 -
吴恩达机器学习笔记(二)
2.1 模型描述例子:预测住房价格 红色叉叉是来自数据集描绘的点这是一个监督学习算法的例子,因为每一个例子都有一个“正确”的答案,我们知道卖出的房子的大小和与之对应的价格。这也是一个回归的例子,回归是指我们预测一个具体的数值输出。注意*:训练样本的数量:m = Number of training examples 输入变量/特征:x’s = “input” variabl...原创 2020-03-19 11:31:40 · 327 阅读 · 0 评论