字符识别模型
这此task为构建定长多字符分类模型。
参考:https://github.com/datawhalechina/team-learning/blob/master/03%20%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89/%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89%E5%AE%9E%E8%B7%B5%EF%BC%88%E8%A1%97%E6%99%AF%E5%AD%97%E7%AC%A6%E7%BC%96%E7%A0%81%E8%AF%86%E5%88%AB%EF%BC%89/Datawhale%20%E9%9B%B6%E5%9F%BA%E7%A1%80%E5%85%A5%E9%97%A8CV%20-%20Task%2003%20%E5%AD%97%E7%AC%A6%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B.md
https://www.cnblogs.com/wj-1314/p/9754072.html
CNN
卷积神经网络是一类特殊的人工神经网络,是深度学习中重要的一个分支。由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。
CNN是一种层次模型,输入的是原始的像素数据。由以下几个步骤构成:
首先图像输入(局部连接模式,局部感受野)——>特征提取(以字母X为例,可以提取出三个重要特征(两个交叉线、一个对角线))——>卷积(对特征进行匹配计算,当图像尺寸增大时,很容易使得计算量变得相当庞大)——>池化(将输入图像进行缩小,减少像素信息,只保留重要信息)
——>激活函数RelU(常用的激活函数有sigmoid、tanh、relu等)——>全连接层(起到“分类器”的作用)
几种神经网络:
- LeNet-5(1998):是一个6层网络结构:三个卷积层,两个下采样层和一个全连接层(图中C代表卷积层,S代表下采样层,F代表全连接层)。其中,C5层也可以看成是一个全连接层,因为C5层的卷积核大小和输入图像的大小一致,都是5*5。
- AlexNet(2012):AlexNet的结构及参数如上图所示,是8层网络结构(忽略激活,池化,LRN,和dropout层),有5个卷积层和3个全连接层。
- VGG-16(2014):共16层(不包括池化和softmax层),所有的卷积核都使用33的大小,池化都使用大小为22,步长为2的最大池化,卷积层深度依次为64 -> 128 -> 256 -> 512 ->512。
- Inception-v1 (2014)
- ResNet-50 (2015)
Pytorch构建CNN模型
这个CNN模型包括两个卷积层,最后并联6个全连接层进行分类。
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset
# 定义模型
class SVHN_Model1(nn.Module):
def __init__(self):
super(SVHN_Model1, self).__init__()
# CNN提取特征模块
self.cnn = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
nn.ReLU(),
nn.MaxPool2d(2),
)
#
self.fc1 = nn.Linear(32*3*7, 11)
self.fc2 = nn.Linear(32*3*7, 11)
self.fc3 = nn.Linear(32*3*7, 11)
self.fc4 = nn.Linear(32*3*7, 11)
self.fc5 = nn.Linear(32*3*7, 11)
self.fc6 = nn.Linear(32*3*7, 11)
def forward(self, img):
feat = self.cnn(img)
feat = feat.view(feat.shape[0], -1)
c1 = self.fc1(feat)
c2 = self.fc2(feat)
c3 = self.fc3(feat)
c4 = self.fc4(feat)
c5 = self.fc5(feat)
c6 = self.fc6(feat)
return c1, c2, c3, c4, c5, c6
model = SVHN_Model1()
接下来是训练代码:
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(model.parameters(), 0.005)
loss_plot, c0_plot = [], []
# 迭代10个Epoch
for epoch in range(10):
for data in train_loader:
c0, c1, c2, c3, c4, c5 = model(data[0])
loss = criterion(c0, data[1][:, 0]) + \
criterion(c1, data[1][:, 1]) + \
criterion(c2, data[1][:, 2]) + \
criterion(c3, data[1][:, 3]) + \
criterion(c4, data[1][:, 4]) + \
criterion(c5, data[1][:, 5])
loss /= 6
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_plot.append(loss.item())
c0_plot.append((c0.argmax(1) == data[1][:, 0]).sum().item()*1.0 / c0.shape[0])
print(epoch)
当然为了追求精度,也可以使用在ImageNet数据集上的预训练模型,具体方法如下:
class SVHN_Model2(nn.Module):
def __init__(self):
super(SVHN_Model1, self).__init__()
model_conv = models.resnet18(pretrained=True)
model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
model_conv = nn.Sequential(*list(model_conv.children())[:-1])
self.cnn = model_conv
self.fc1 = nn.Linear(512, 11)
self.fc2 = nn.Linear(512, 11)
self.fc3 = nn.Linear(512, 11)
self.fc4 = nn.Linear(512, 11)
self.fc5 = nn.Linear(512, 11)
def forward(self, img):
feat = self.cnn(img)
# print(feat.shape)
feat = feat.view(feat.shape[0], -1)
c1 = self.fc1(feat)
c2 = self.fc2(feat)
c3 = self.fc3(feat)
c4 = self.fc4(feat)
c5 = self.fc5(feat)
return c1, c2, c3, c4, c5