零基础入门CV赛事-Task3

本文介绍了一种基于卷积神经网络(CNN)的定长多字符分类模型构建方法,通过两个卷积层提取特征,并使用六个并联的全连接层进行分类。文章详细阐述了CNN的工作原理,包括局部连接、卷积、池化和激活函数等关键步骤,以及LeNet-5、AlexNet、VGG-16等经典CNN架构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

字符识别模型

这此task为构建定长多字符分类模型。
参考:https://github.com/datawhalechina/team-learning/blob/master/03%20%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89/%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89%E5%AE%9E%E8%B7%B5%EF%BC%88%E8%A1%97%E6%99%AF%E5%AD%97%E7%AC%A6%E7%BC%96%E7%A0%81%E8%AF%86%E5%88%AB%EF%BC%89/Datawhale%20%E9%9B%B6%E5%9F%BA%E7%A1%80%E5%85%A5%E9%97%A8CV%20-%20Task%2003%20%E5%AD%97%E7%AC%A6%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B.md
https://www.cnblogs.com/wj-1314/p/9754072.html

CNN

卷积神经网络是一类特殊的人工神经网络,是深度学习中重要的一个分支。由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。
CNN是一种层次模型,输入的是原始的像素数据。由以下几个步骤构成:
首先图像输入(局部连接模式,局部感受野)——>特征提取(以字母X为例,可以提取出三个重要特征(两个交叉线、一个对角线))——>卷积(对特征进行匹配计算,当图像尺寸增大时,很容易使得计算量变得相当庞大)——>池化(将输入图像进行缩小,减少像素信息,只保留重要信息)
——>激活函数RelU(常用的激活函数有sigmoid、tanh、relu等)——>全连接层(起到“分类器”的作用)

在这里插入图片描述
几种神经网络:

  • LeNet-5(1998):是一个6层网络结构:三个卷积层,两个下采样层和一个全连接层(图中C代表卷积层,S代表下采样层,F代表全连接层)。其中,C5层也可以看成是一个全连接层,因为C5层的卷积核大小和输入图像的大小一致,都是5*5。
  • AlexNet(2012):AlexNet的结构及参数如上图所示,是8层网络结构(忽略激活,池化,LRN,和dropout层),有5个卷积层和3个全连接层。
  • VGG-16(2014):共16层(不包括池化和softmax层),所有的卷积核都使用33的大小,池化都使用大小为22,步长为2的最大池化,卷积层深度依次为64 -> 128 -> 256 -> 512 ->512。
  • Inception-v1 (2014)
  • ResNet-50 (2015)

Pytorch构建CNN模型

这个CNN模型包括两个卷积层,最后并联6个全连接层进行分类。

import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True

import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset

# 定义模型
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),  
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(), 
            nn.MaxPool2d(2),
        )
        # 
        self.fc1 = nn.Linear(32*3*7, 11)
        self.fc2 = nn.Linear(32*3*7, 11)
        self.fc3 = nn.Linear(32*3*7, 11)
        self.fc4 = nn.Linear(32*3*7, 11)
        self.fc5 = nn.Linear(32*3*7, 11)
        self.fc6 = nn.Linear(32*3*7, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5, c6
    
model = SVHN_Model1()

接下来是训练代码:

# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(model.parameters(), 0.005)

loss_plot, c0_plot = [], []
# 迭代10个Epoch
for epoch in range(10):
    for data in train_loader:
        c0, c1, c2, c3, c4, c5 = model(data[0])
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        loss_plot.append(loss.item())
        c0_plot.append((c0.argmax(1) == data[1][:, 0]).sum().item()*1.0 / c0.shape[0])
        
    print(epoch)

当然为了追求精度,也可以使用在ImageNet数据集上的预训练模型,具体方法如下:

class SVHN_Model2(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
                
        model_conv = models.resnet18(pretrained=True)
        model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
        model_conv = nn.Sequential(*list(model_conv.children())[:-1])
        self.cnn = model_conv
        
        self.fc1 = nn.Linear(512, 11)
        self.fc2 = nn.Linear(512, 11)
        self.fc3 = nn.Linear(512, 11)
        self.fc4 = nn.Linear(512, 11)
        self.fc5 = nn.Linear(512, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        # print(feat.shape)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        return c1, c2, c3, c4, c5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值