余弦相似度

余弦相似度是衡量两个向量间相似性的标准,通过计算它们的点乘除以各自模长的乘积得到。在文本分析中,常用于判断文档间的相关性。归一化后的余弦相似度确保结果在[0,1]范围内,便于比较。该方法广泛应用于信息检索、推荐系统等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

余弦相似度是用来衡量两个向量之间的相似度的一种常用方法。具体来说,余弦相似度计算的是两个向量的夹角的余弦值,并以此来表示两个向量的相似度。

余弦相似度的计算公式如下:

相似度 = 向量A · 向量B / (向量A的模长 * 向量B的模长)

其中,向量A和向量B分别表示要比较相似度的两个向量,向量A · 向量B表示向量的点乘,向量A的模长和向量B的模长分别表示向量A和向量B的长度。

在计算余弦相似度时,通常会将结果归一化到[0,1]的范围内,以便更方便地比较不同向量之间的相似度。归一化后的相似度计算公式如下:

相似度 = (向量A · 向量B) / (向量A的模长 * 向量B的模长)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值