python 网格聚类_聚类k选择及效果评估的python实现---肘部法则和轮廓系数

本文介绍了如何使用Python进行网格聚类,重点讲解了肘部法则和轮廓系数在聚类数量选择和效果评估中的应用。通过示例代码展示了如何计算平均畸变程度以确定最佳k值,并利用轮廓系数评估聚类的密集与分散程度。同时,注意到k-means的随机性可能导致局部最优,需要多次运行以寻找最佳结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

聚类是一种无监督学习的分类算法,我们一般选择使用k-means,聚类速度快,k-means随机选择重心,然后把样本点分配到离他们最近的类,在通过迭代吧该类的重心移到该类全部成员位置的平均值那里,以此类推进行迭代,但由于没有固定的类别标记,所以类别的数量和聚类的效果就需要我们通过肘部法则和轮廓系数进行判断。肘部法则--聚类数量选择

肘部法则的计算原理是成本函数,成本函数是类别畸变程度之和,每个类的畸变程度等于每个变量点到其类别中心的位置距离平方和,若类内部的成员彼此间越紧凑则类的畸变程度越小,反之,若类内部的成员彼此间越分散则类的畸变程度越大。在选择类别数量上,肘部法则会把不同值的成本函数值画出来。随着值的增大,平均畸变程度会减小;每个类包含的样本数会减少,于是样本离其重心会更近。但是,随着值继续增大,平均畸变程度的改善效果会不断减低。值增大过程中,畸变程度的改善效果下降幅度最大的位置对应的值就是肘部。

python代码实现:

#新建模拟变量

import  numpy as np

import matplotlib.pyplotas plt

cluster1 = np.random.uniform(0.5,1.5,(2,10))

#随机生成0.5--1.5之间的数值,生成2*20个,2表示的是两个列表,10表示一个列表10行,整个在组成一个数组

cluster2 = np.random.uniform(3.5,4.5,(2,10))

x = np.hstack((cluster1,cluster2))

#此函数为水平按列进行堆叠,如果xy是两个列表则横向堆叠,如果xy分别是2*2列表,则为一列一列的横向堆叠

#所以上面的两个使用hstack之后应该是2*1的列表形式

#另外这个函数必须是加两个括号

x = x.T

plt.figure()

plt.subplot(2,1,1)

plt.axis([0,5,0,5])#设置xy轴范围,和xl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值