
机器学习
文章平均质量分 87
和你在一起^_^
see you bet
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
特征值分解与奇异值分解原理与计算
(一)特征值如果一个非零向量v是方阵A的特征向量,将一定可以表示成下面形式,而λ是特征向量v对应的特征值:特征值分解是将一个矩阵分解成下面的形式:其中Q是这个矩阵甲的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。一个矩阵的一组特征向量是一组正交向量。【练习题】求解矩阵一的特征值与特征向量。方阵的特征值表示什么含义呢,我们通过一组向量图表示。初始...原创 2018-11-10 02:40:22 · 21418 阅读 · 1 评论 -
Sklearn中的StratifiedKFold与stacking模型的融合方法
StratifiedKFold用法类似Kfold,但是他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同。from sklearn.model_selection import StratifiedKFoldX = np.array([[1, 2, 3, 4], [11, 12, 13, 14], [21, 22, 23...原创 2020-04-10 18:25:31 · 1213 阅读 · 0 评论 -
机器学习算法之集成学习之模型融合
机器学习算法之集成学习之模型融合前言:集成学习(Ensemble Learning),广泛用于分类和回归任务。它最初的思想很简单:使用一些(不同的)方法改变原始训练样本的分布,从而构建多个不同的分类器,并将这些分类器线性组合得到一个更强大的分类器,来做最后的决策。也就是常说的“三个臭皮匠顶个诸葛亮”的想法。 集成学习的理论基础来自于Kearns和Valiant提出的基于PAC(prob...原创 2020-04-10 18:10:18 · 1430 阅读 · 0 评论 -
Python File文件 方法
Python File(文件) 方法open() 方法Python open() 方法用于打开一个文件,并返回文件对象,在对文件进行处理过程都需要使用到这个函数,如果该文件无法被打开,会抛出 OSError。注意:使用 open() 方法一定要保证关闭文件对象,即调用 close() 方法。open() 函数常用形式是接收两个参数:文件名(file)和模式(mode)。open(file...原创 2020-03-01 12:37:28 · 437 阅读 · 0 评论 -
【TensorFlow】常用函数方法列表
tf.nn.l2_loss()的用法 计算张量的误差值 sum(t**2)/2l2_loss()这个函数的作用是利用L2范数来计算张量的误差值,但是没有开发并且只取L2范数的值的一半函数:tf.nn.l2_loss( t, name=None)参数:t:一个张量(tensor),类型可以为:half, bfloat16, float32, float64na...原创 2020-03-01 09:52:52 · 351 阅读 · 0 评论 -
【模式识别与智能计算】第9章 聚类分析
本章要点:聚类的设计基于试探的未知类别聚类算法层次聚类算法动态聚类算法模拟退火聚类算法9.1聚类的设计聚类分析是指事先不了解-批样品中的每一个样品的类别或者其他的先验知识,而唯一的分类根据是样品的特征,利用某种相似性度量的方法,把特征相同或相近的归为一类,实现聚类划分。例如,对于- -幅手写数字图像,如图9- 1所示,将相同的手写数字划分为一类,即聚类分析要解决的问题。本书从...原创 2020-02-23 09:11:02 · 1903 阅读 · 0 评论 -
【模式识别与机器学习】第4章 基于概率统计的贝叶斯分类器设计
本章要点:贝叶斯决 策的基本概念基于最小错 误率的贝叶斯决策基于最小风险的贝叶斯决策贝叶斯决策比较基于二值数据的贝叶斯分类实现基于最小错误 率的贝叶斯分类实现基于最小风险的贝叶斯分类实现...原创 2020-02-21 09:54:35 · 379 阅读 · 0 评论 -
猫脸关键点检测Baseline【阿水】
关键点检测是许多计算机视觉任务的基础,例如表情分析、异常行为检测。大家接触最多的可能是人脸关键点检测,广泛应用于人脸识别、美颜、换妆等。本次AI研习社举办猫脸关键点检测,训练集有10468张,测试集9526张,目标是检测猫脸的9个关键点。其实我在读书期间就看到过这个猫脸数据,来自CUHK。猫脸关键点检测也是比较新的一个方向,例子比较直接,也非常方便用于例子讲解。猫脸关键点和人脸关键点类似,每...原创 2020-02-18 14:33:04 · 2174 阅读 · 2 评论 -
Keras: 基于 Python 的深度学习库
什么是kerasKeras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验。能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。如果你在以下情况下需要深度学习库,请使用 Keras:允许简单而快速的原型设计(由于用户友好,高度模块化,可扩展性)。同时支持卷积神...原创 2019-11-28 12:54:46 · 641 阅读 · 0 评论 -
2019CCF-BDCI-乘用车细分市场销量预测方案(Top1%)
本文转自鱼佬,ID:“鱼遇雨欲语与余”的知乎专栏,文章包含了详细的代码和以及对应的解释,希望能帮助更多对数据挖掘感兴趣的小伙伴。写在前面本文将带来最近一场比赛的方案分享,这是一场有关时间序列的问题,虽然没有进决赛,不过很多点还是非常值得学习的。希望能给大家带来帮助,也欢迎与我进行更多讨论。比赛链接这里也将从代码出发,来分享我的解题思路。正文1.数据说明赛题给出了历史销量数据包含60个...原创 2019-11-26 15:40:47 · 3161 阅读 · 0 评论 -
【自然语言处理】正则表达式
https://www.runoob.com/regexp/regexp-syntax.html^ 表示匹配字符串的开始位置 (例外 用在中括号中[ ] 时,可以理解为取反,表示不匹配括号中字符串)$ 表示匹配字符串的结束位置* 表示匹配 零次到多次+ 表示匹配 一次到多次 (至少有一次)? 表示匹配零次或一次. 表示匹配单个字符| 表示为或者,两项中取一项]( ...原创 2019-10-30 23:02:20 · 1571 阅读 · 0 评论 -
Tensorboard报错的解决
tensorboard --inspect --logdir C:\Users\xxoo\PycharmProjects\tensorboard\logstensorboard --logdir= C:\Users\xxoo\PycharmProjects\tensorboard\logs问题一终端输入命令:tensorboard –logdir=logs ,提示tensorboard...原创 2019-09-15 19:36:53 · 2817 阅读 · 0 评论 -
ImportError: cannot import name 'cygrpc' from 'grpc._cython'
python -m pip install grpcio --ignore-installed原创 2019-09-15 19:27:04 · 6103 阅读 · 3 评论 -
AttributeError: module 'tensorflow' has no attribute'name_scope' 'placeholder'等问题的解决
aaaaaaaaaa 想哭了,这个错误找了两天的时间才解决掉!!!!!!!查看tf版本。我的是因为在tf2下使用了tf1的API。解决方式:使用import tensorflow.compat.v1 as tftf.disable_v2_behavior()替换import tensorflow as tf...原创 2019-09-15 17:39:52 · 10166 阅读 · 15 评论 -
过拟合
过拟合过拟合学习资料:过于自负回归分类的过拟合解决方法过拟合 (Overfitting)过拟合学习资料:Tensorflow: dropout 教程PyTorch: dropout 教程Theano: l1 l2 regularization 教程今天我们会来聊聊机器学习中的过拟合 overfitting 现象, 和解决过拟合的方法.注: 本文不会涉及数学推导. 大家可以在很多其他地...原创 2019-09-15 15:12:03 · 313 阅读 · 0 评论 -
【机器学习实例】利用python实现梯度下降和逻辑回归原理(Python详细源码:预测学生是否被录取)
我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。导入函数库#三大件import numpy as npimport pan...原创 2019-08-19 19:53:28 · 1946 阅读 · 0 评论 -
【机器学习】处理样本不均衡问题的方法,样本权重的处理方法及代码
今天学习了关于样本类别分布不均衡的处理的一些知识,在此和大家一起分享一下。什么是样本类别分布不均衡?举例说明,在一组样本中不同类别的样本量差异非常大,比如拥有1000条数据样本的数据集中,有一类样本的分类只占有10条,此时属于严重的数据样本分布不均衡。样本不均衡指的是给定数据集中有的类别数据多,有的数据类别少,且数据占比较多的数据类别样本与占比较小的数据类别样本两者之间达到较大的比例。样本...原创 2019-08-20 10:06:56 · 35501 阅读 · 3 评论 -
【机器学习】交叉验证防止过拟合(含义+代码+演示)
一 训练集 vs 测试集在模式识别(pattern recognition)与机器学习(machine learning)的相关研究中,经常会将数据集分为训练集(training set)跟测试集(testing set)这两个子集,前者用以建立模型(model),后者则用来评估该模型对未知样本进行预测时的精确度(泛化能力:generalization ability)。将完整的数据集分为...原创 2019-08-20 15:24:07 · 7352 阅读 · 2 评论 -
【机器学习】准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F值(F-Measure)、AUC、ROC的理解
下面的符号含义:TP-将正预测为真,FN-将正预测为假,FP-将反预测为真,TN-将反预测为假。精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。而召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。准确率准确率是对给定数据集,分类正确样本个数和总样本数的比值。即: Precision=TP+TNTP+FN+FP+TNPrecisio...原创 2019-08-21 09:37:11 · 2996 阅读 · 0 评论 -
Markdown编辑器中图片和公式的居中和大小调整的最简便方法,CSDN编辑器markdown字体、颜色与字号的设置
初入Markdown编辑器写文章时,当需要插入图像时,不能保证图像的大小一致,且图像位置默认居左。为解决上述问题,下面给出对图片进行居中和图像调整大小的最简便方法:居中在图片插入的括号内字符最后加上#pic_center(前面不用加空格)即可。图像大小设置在图片插入的括号内字符最后加上=数字x数字(宽度*高度,前面需要加空格)即可。以头像为例:#pic_center公式居中$$Pr...原创 2019-08-21 09:56:21 · 3102 阅读 · 0 评论 -
【机器学习案例实战】信用卡欺诈检测(推荐入门看下,已更新至最新库)
1.故事背景原始数据为个人交易记录,但是考虑数据本身的隐私性,已经对原始数据进行了类似PCA的处理,现在已经把特征数据提取好了,接下来的目的就是如何建立模型使得检测的效果达到最好,这里我们虽然不需要对数据做特征提取的操作,但是面对的挑战还是蛮大的。利用Logistic regression进行信用卡欺诈检测,使用的是一份竞赛数据集(已脱敏处理),使用的是Python的Jupyter Notebo...原创 2019-08-21 11:19:47 · 1193 阅读 · 0 评论 -
【机器学习】,正则化惩罚(实例+图示+解释)
在机器学习特别是深度学习中,我们通过大量数据集希望训练得到精确、泛化能力强的模型,对于生活中的对象越简洁、抽象就越容易描述和分别,相反,对象越具体、复杂、明显就越不容易描述区分,描述区分的泛化能力就越不好。 比如,描述一个物体是“方的”,那我们会想到大概这个物体的投影应该是四条边,两两平行且垂直,描述此物体忽略了材质、质量、颜色等等的性状,描述的物体的多,相反,描述的内容越丰富详实则约束越多...原创 2019-08-22 14:38:48 · 5360 阅读 · 3 评论 -
【机器学习】混淆矩阵详细介绍(代码+含义+解释)
文章目录一瞥图形介绍重要概念混淆矩阵延伸出的各个评价指标关键术语图形介绍同样的道理,这里我们采用recall来计算模型的好坏,也就是说那些异常的样本我们的检测到了多少,这也是咱们最初的目的!这里通常用混淆矩阵来展示。混淆矩阵(confusion matrix)衡量的是一个分类器分类的准确程度。理解其概念本身容易理解,但一些特定术语易被混淆。混淆矩阵适用于包含多个分类器的问题,本文为了让读...原创 2019-08-22 15:02:24 · 32268 阅读 · 3 评论 -
【机器学习概论】
机器学习数据挖掘——挖掘流失的用户,提供一些优惠活动。计算机视觉——自动驾驶公司待遇不错的,高出传统岗位,核心竞争力比较高;推荐系统+机器学习科学家+知道如何提取特征?1)训练样本,机器学习数据2)特征提取,人工标注(如何提取正确特征很关键)3)学习函数,如何画线,区分不同类型4)预测基本工具库Numpy :科学计算库Pandas: 数据分析处理库,帮助便利完成数据分析处理...原创 2019-08-22 16:26:24 · 265 阅读 · 0 评论 -
【机器学习】集成算法与随机森林
集成算法与随机森林目的:让机器学习效果更好,一个人决策树效果不够,那就一群树。Bagging训练多个分类器取均值,进行并行训练f(x)=1m∑k=1mfk(x)f(x)= \frac{1}{m}\sum_{k=1}^mf_k(x)f(x)=m1k=1∑mfk(x)全称:Bootstrap aggregation(并行训练一堆分类器(树))最典型代表:随机森林随机:数据采样随机,...原创 2019-08-27 11:25:02 · 531 阅读 · 0 评论 -
【完整全面】python sklearn常用分类算法模型的调用
实现对’NB’, ‘KNN’, ‘LR’, ‘RF’, ‘DT’, ‘SVM’,‘SVMCV’, 'GBDT’模型的简单调用。 # coding=gbk import time from sklearn import metrics import pickle as pickle import pandas as pd # Multinomial Naive Bayes...原创 2019-08-28 09:36:47 · 2001 阅读 · 0 评论 -
【初学者必看】机器学习之梯度下降最全算法总结,基本概念+例子+代码
【机器学习】【梯度下降】基本概念详解1. 梯度2. 梯度下降与梯度上升3. 梯度下降法算法详解3.1 梯度下降的直观解释3.2 梯度下降的相关概念1. 步长(Learning rate):2.特征(feature):3. 假设函数(hypothesis function):4. 损失函数(loss function):3.3 梯度下降的详细算法3.3.1 梯度下降法的代数方式描述1. 先决条件: ...原创 2019-03-12 07:05:54 · 1013 阅读 · 0 评论