torch 的数据加载 Datasets & DataLoaders

点赞收藏关注!
如需要转载,请注明出处!

torch的模型加载有两种方式:
Datasets & DataLoaders

torch本身可以提供两数据加载函数:
torch.utils.data.DataLoader()和torch.utils.data.Dataset()

其中torch.utils.data 是PyTorch提供的一个模块,用于处理和加载数据。该模块提供了一系列工具类和函数,用于创建、操作和批量加载数据集。

加载函数后可以实现数据集代码与模型训练代码分离,以获得更好的可读性和模块化
Dataset定义了抽象的数据集类,用户可以通过继承该类来构建自己的数据集。制作自己的数据集必须要实现三个函数:

  • init()函数在实例化Dataset对象时运行一次
  • len()函数返回数据集中样本的数量
  • getitem()函数的作用是:从给定索引 index,从数据集中加载并返回一个样本并将其转换为张量。
import torch
from torch.utils.data import Dataset

class CreateDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __getitem__(self, index):
        # 根据索引获取样本
        return self.data[index]

    def __len__(self):
        # 返回数据集大小
        return len(self.data)

# 创建数据集对象
data = [[255,255,255],[255,245,235],[225,226,227]]
dataset = CreateDataset(data)

# 根据索引获取样本
sample = dataset[1]
print(sample)
# [255,245,235]

数据处理模块其他的功能:

  • TensorDataset: 继承自 Da
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值