tensor张量 ------ python特殊的数据结构

本文介绍了如何在PyTorch中使用张量进行操作,包括从数据创建张量、从NumPy数组转换、属性描述、设备管理、索引、连接、与NumPy的交互以及基本的数学运算,如矩阵乘法和元素乘积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点赞收藏关注!
如需转载请注明出处!

张量与数组和矩阵非常相似。

  • 在PyTorch中,使用张量来编码模型的输入和输出,以及模型的参数。

  • 张量可以在GPU或其他硬件加速器上运行。 张量和NumPy数组通常可以共享相同的底层内存,从而消除了复制数据的需要。

  • 对自动微分进行了优化。

一: Tensor构建

  • 张量可以直接从数据中创建。数据类型是自动推断的
import torch
import numpy as np
data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)
  • 张量可以从NumPy数组中创建
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
  • 从另一个tensor创建
#新张量保留参数张量的属性(形状,数据类型)
x_ones = torch.ones_like(x_data) # 保留x_data的属性
print(f"Ones Tensor: \n {x_ones} \n")
x_rand = torch.rand_like(x_data, dtype=torch.float) # 重写x_data的数据类型
print(f"Random Tensor: \n {x_rand} \n")
  • 随机量或者常量初始化
shape = (2,3,)#决定了输出张量的维数
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")

二:Tensor常用操作

张量属性描述它们的形状、数据类型和存储它们的设备


tensor = torch.rand(3,4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
  • 将Tensor转到GPU上
# We move our tensor to the GPU if available
if torch.cuda.is_available():
tensor = tensor.to('cuda')

  • Tensor索引
tensor = torch.ones(4, 4)
print('First row: ',tensor[0])
print('First column: ', tensor[:, 0])
print('Last column:', tensor[..., -1])
tensor[:,1] = 0
print(tensor)
  • Tensor连接concatenate
t1 = torch.cat([tensor, tensor], dim=1)
print(t1)

  • Tensor与NumPy相互转换
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
tt = torch.from_numpy(n)
print(f"t:{tt}")
  • 数学运算
#计算两个张量之间的矩阵乘法。Y1 y2 y3的值是一样的
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)
y3 = torch.rand_like(tensor)
torch.matmul(tensor, tensor.T, out=y3)
print(f"y1: {y1}")
print(f"y2: {y2}")
print(f"y3: {y3}")
#它计算元素的乘积。z1 z2 z3的值是一样的
z1 = tensor * tensor
z2 = tensor.mul(tensor)
z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
print(f"z1: {z1}")
print(f"z2: {z2}")
print(f"z3: {z3}")

如有帮助,点赞收藏关注!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值