pytorch检测图像位置正确,检测框极大几乎覆盖整个图像

文章讲述了使用PyTorch实现Yolo模型进行目标检测时遇到的问题,发现检测框尺寸异常大,原因是初始学习率过低。通过增大学习率并重新训练,解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简要说一下
yolo结构,pytorch 检测40962160图像中的16670左右的目标。
训练模型成功后测试,发现物体的检测框不正常。
覆盖位置正确但面积极大,几乎等于图像本身。
查找原因后发现初始学习率设置的太小了,扩大十倍。
重新训练。测试正常!

在此记录,防止下次忘记怎么解决!
如有帮助,给我一键三连

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值