蓝桥杯算法解析(十五):图论高阶算法——网络流进阶与全局最小割
前言:图论优化的巅峰技术
网络流算法是算法竞赛皇冠上的明珠,在蓝桥杯国赛难题中占比超过35%。本文将深入探讨网络流的高级应用和全局最小割的求解方法,通过系统化的理论讲解和实战案例分析,帮助读者掌握这些顶尖的图论技术。
🔥 本文核心价值:
- Dinic算法的3种优化技巧
- 最小割树的构建与应用
- 最大权闭合子图的转化方法
- 5道蓝桥杯压轴题的深度解析
- 网络流建模的5种高级技巧
第一章 网络流算法进阶(约18000字)
1.1 Dinic算法优化三剑客
优化技术对比表
优化技术 | 效果提升 | 实现难度 | 适用场景 |
---|---|---|---|
当前弧优化 | 2-5x | ★★☆☆☆ | 普遍适用 |
多路增广 | 3-8x | ★★★☆☆ | 稠密图 |
分层图预处理 | 1.5-3x | ★★☆☆☆ | 多次查询 |
当前弧优化实现
class OptimizedDinic:
def __init__(self, n):
self.size = n
self.graph = [[] for _ in range(n)]
self.cur = [0] * n # 当前弧指针
def add_edge(self, fr, to, cap):
forward = Edge(to, len(self.graph[to]), cap)
backward = Edge(fr, len(self.graph[fr]), 0)
self.graph[fr].append(forward)
self.graph[to].append(backward)
def bfs_level(self, s, t, level):
queue = deque()
level[:] = [-1] * self.size
level[s] = 0
queue.append(s)
while queue:
u = queue.popleft()
for edge in self.graph[u]:
if edge.cap > 0 and level[edge.to] < 0:
level[edge.to] = level[u] + 1
queue.append(edge.to)
def dfs_augment(self, u, t, flow, level):
if u == t:
return flow
while self.cur[u] < len(self.graph[u]):
edge = self.graph[u][self.cur[u]]
if edge.cap > 0 and level[u] < level[edge.to]:
min_flow = min(flow, edge.cap)
result = self.dfs_augment(edge.to, t, min_flow, level)
if result > 0:
edge.cap -= result
self.graph[edge.to][edge.rev].cap += result
return result
self.cur[u] += 1
return 0
def max_flow(self, s, t):
flow = 0
level = [-1] * self.size
while True:
self.bfs_level(s, t, level)
if level[t] < 0:
return flow
self.cur = [0] * self.size
while True:
f = self.dfs_augment(s, t, float('inf'), level)
if f == 0:
break
flow