python实训总结泰坦尼克号重建_Python之泰坦尼克号生存率分析

本文通过Python对泰坦尼克号数据进行分析,探讨了生存率与性别、舱位等级、年龄等因素的关系。数据清洗过程中处理了缺失值,数据可视化显示女性和一等舱乘客的生还率较高,年龄段在(0.34, 16.336]的人群生还率最高。" 114492715,10542976,Android Fastboot 刷机教程:分区擦除与恢复,"['Android开发', '设备恢复', '刷机教程', 'Fastboot模式', '分区管理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

距离上一篇文章更新刚刚看了一下,大概22天前了,因为这段时间家里以及学业上的事比较忙,就耽搁得久了,于是今天我又双双缀缀来更新啦:)本次Python数据分析用到的工具:Anaconda,Python3.7

一、分析目的

探索泰坦尼克号邮轮上生存率与其他因素(性别、客舱等级、年龄等)之间的关系

二、理解数据

2.1.数据导入

将下载好的数据集导入分析工具,观察该数据集的内容以及质量

2.1.1.导入相关库

2.1.2.数据导入

2.1.3.理解数据

2.1.4.注意事项

在数据导入时可能会出现如下报错:

FileNotFoundError: File b'E:\titanicdata\train.csv' does not exist

解决方法:

Windows下的路径为:E:\titanicdata\train.csv

应将 data_train = pd.read_csv("E:\titanicdata\train.csv"

改为: data_train = pd.read_csv("E:\\titanicdata\\train.csv")

或 data_train = pd.read_csv("E:/titanicdata/train.csv")

或 data_train = pd.read_csv(r"E:\titanicdata\train.csv"

原因如下:反斜杠\是转义字符,想表达\请用\\

三、数据清洗

3.1.选择子集

表中的数据都已筛选,这里不用操作

3.2.列名重命名

这里笔者认

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值