- 博客(12)
- 资源 (2)
- 收藏
- 关注
原创 Tensor Low-Rank Reconstruction for Semantic Segmentation
三:Tensor Low-Rank Reconstruction for Semantic Segmentation(ECCV,2020,The Chinese University of Hong Kong)提出背景:用2D相似度矩阵描述3D上下文信息,这种空间压缩会导致通道方面的注意力的丢失。另一种方法是直接对上下文信息建模而不进行压缩,然而目前仍然没有成熟的方法。本文:本文提出了一种新的建模3D上下文信息的方法,1避免了空间压缩,2解决了高阶难度。受张量正则-多态分解理论(即高阶张量可以表示为1
2021-03-13 10:13:15
585
原创 Nonlocal Tensor Sparse Representation and Low-Rank Regularization for Hyperspectral Image Compressiv
二:Nonlocal Tensor Sparse Representation and Low-Rank Regularization for Hyperspectral Image Compressive Sensing Reconstruction(remote sensing,2019)作者:Jize Xue, Yongqiang Zhao, Wenzhi Liao and Jonathan Cheung-Wai Chan单位:西北工业大学、Ghent University、Universite
2021-03-12 17:26:49
501
原创 Tensor non-local low-rank regularization for recovering compressed hyperspectral images
一:Tensor non-local low-rank regularization for recovering compressed hyperspectral images作者:Yongqiang Zhao*, Jize Xue and Jinglei Hao(2017,IEEE)研究现状:现有的HSI-CR(压缩恢复)方法大多是在空间和光谱域对高光谱立方体进行矢量化处理,在恢复过程中会破坏空间和光谱相关性,造成空间和光谱信息失真。同时,矢量化也使得HSI固有的结构稀疏性得不到充分利用。本文:本
2021-03-12 17:25:20
420
1
原创 Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild
论文题目:Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild作者:Xin Chen、 Lingxi Xie、Jun Wu、Qi Tian2期刊:International Journal of Computer Vision一:主要内容DARTS方法中,如果在迁移和评估网络结构时效果不好,作者认为是架构在搜索和验证两个不同场景中网络的深度不同,本文把这种现象称之为depth gap。为了解决这个问题,采用渐进式增加
2021-03-12 17:20:58
333
原创 DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH
论文题目:DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH作者:Hanxiao Liu 、Karen Simonyan、Yiming Yang会议:Published as a conference paper at ICLR 2019一:主要内容本文提出了一种适用于卷积神经网络和循环神经网络的可微神经网络搜索方法–DARTS,其利用基于梯度的方法实现高效的结构搜索。并且具有可迁移的特点。1.单个cell结构2.算法3.可迁移性...
2021-03-12 17:18:58
175
原创 ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding
论文题目:ISTA-NAS: Efficient and Consistent NeuralArchitecture Search by Sparse Coding作者:Yibo Yang、Hongyang Li、 Shan Y ou、Fei Wang、Chen Qian、Zhouchen Lin来源:34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.一:主要内容将神
2021-03-12 17:15:20
425
原创 Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classification
论文题目:Multi-Scale Dense Networks for HyperspectralRemote Sensing Image Classification作者:Chunju Zhang , Guandong Li , and Shihong Du期刊:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019一:文章概述一个用于HSI分类的网络MSDN-实现多尺度特征信息融合和深
2021-03-12 17:11:31
553
1
原创 Optimization-Inspired Compact Deep Compressive Sensing
论文题目:Optimization-Inspired Compact Deep Compressive Sensing作者:Zhang, Jian and Zhao, Chen and Gao, Wen期刊:IEEE Journal of Selected Topics in Signal Processing年份:2020一:文章概述OPINE-Net特点:(1)受优化启发的可解释深度网络,用于自适应采样和恢复。采样矩阵的正交约束和二进制约束都同时纳入OPINE-Net。(2){采样子网,初
2021-03-12 17:09:15
879
原创 ISTA-Net : Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing
论文题目:ISTA-Net : Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing作者:Zhang, Jian and Ghanem, Bernard书名:{CVPR}年份:{2018}<Jian Zhang, Bernard Ghanem , “ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image
2021-03-12 17:03:17
4446
3
原创 Hyperspectral Image Reconstruction using Deep External and Internal Learning (Tao Zhang,2019,IEEE)
Hyperspectral Image Reconstruction using Deep External and Internal Learning(Tao Zhang,2019,IEEE)1、基于CNN的编码HSI重建方法。1.1设计一个基于CNN的信道注意重建网络来提取HSI的空间-光谱相似性。利用外部数据集中空间-光谱相关性训练网络。1.2根据编码图像的空间-光谱约束制定网络,该网络利用內部成像模型从当前图片中学习特殊的先验。2、在原本CASSI中添加DCD-双摄像头设计。->提
2021-03-12 16:56:43
931
原创 a deep learning approach to real-time recovery for compressive hyperspectral imaging
一:论文题目(Ruimin Li2017,IEEE)1、CASSI对3D数据立方体的调制和压缩。2、传感器阵列上的离散编码结果-每个光谱通道上的code mask都是独立的。3、网络结构-全连接网络。输入:BxB 输出:BxBxC3.1对网络进行测试,选取不同块大小和隐藏层数量,选取最优参数设置。3.2选取B=8,K=2,epochs=50,不同光谱通道图像恢复结果。4、对网络输出的后置处理-应对快
2021-03-12 16:53:15
150
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人