Gaussian Mixtures 聚类算法

本文介绍了混合高斯模型(GMM),一种假设样本由多个未知参数的高斯分布混合生成的概率模型。详细讨论了GMM的基本概念,包括簇的椭球形状特性,以及在不了解具体分布参数的情况下如何处理样本生成问题。同时,提到了GMM的一些变体,并强调了在使用GMM前需要预先确定高斯分布数量的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


混合高斯模型

一. 算法介绍

1.1简介

混合高斯模型 Gaussian mixture model (GMM) 是一种概率模型,它假定样本是由多个参数未知的高斯分布(二维时叫做正态分布)的混合生成的。is a probabilistic model that assumes that the instances were generated from a mixture of several Gaussian distributions whose parameters are unknown.

从单独的高斯分布生成的所有样本都形成一个cluster,这个cluster通常看起来像一个椭球.每个簇可以具有不同的椭圆形状,大小,密度和方向,就像下图一样
在这里插入图片描述
当你观察一个样本时,你知道它是从一个高斯分布中生成的,但你并不知道它属于哪一个高斯分布,并且不知道这些分布的参数是什么

1.2 GMM变体variant

高斯混合模型有一些变体,其中最简单的: 在GaussianMixture 类中实现.您必须事先知道高斯分布的数量k。 假定数据集X是通过以下概率过程生成的:

  • 对于每一个样本

卡住了!!!复习一下密度函数和协方差矩阵再回来看 卡在了书的P263

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值