pytorch加载Mnist数据集以及batch可视化

本文介绍了在PyTorch中加载MNIST数据集时遇到的问题及解决方法,包括图像的归一化、灰度图转RGB、数据格式调整以适应imshow显示,以及处理Dataloader加载后的batch数据时出现的RuntimeError。参考了相关博客资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

当自己只是看别人的代码时,觉得自己好像都懂,等到自己动手,连Mnist数据集都不能很好地导入,哭/(ㄒoㄒ)/~~
 

1.通道中数值的归一等

transforms.ToTensor()
# 会使通道数值变为[0,1]

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
# 相当于在3个通道进行均值为0.5,标准差为0.5的归一化,归一化之后[-1,1]

plt.imshow()
# 在使用imshow()时,其数据应该为[0,1]的浮点数,因此必须在上述基础上进行以下操作

img = img / 2 + 0.5
# 将[-1,1]的取值范围,转为[0,1],以供imshow

 

2.将灰度图转化为RGB图

transforms.Lambda(lambda x: x.repeat(3, 1, 1))
# 复制一个通道的数据到三个通道

 

3.从img数据到imshow可以输出数据

plt.imshow(np.transpose(npimg, (1, 2, 0)))
# (1,2,0)是指将原来1维数据放在现在的0维,以此类推

在plt.imshow在现实的时候输入的是(imagesize,imagesize,channels),而参数img的格式为(channels,imagesize,imagesize),两者的格式不一致,需要调用np.transpose函数进行格式转化。
 

4.查看Dataloader加载后的一个batch数据

images,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值