java回溯法求解01背包问题_回溯法——求解0-1背包问题

本文介绍了如何使用回溯法求解0-1背包问题,详细阐述了界限函数的概念、应用时机以及回溯策略。通过构建搜索空间树,并对物品按价值重量比排序,逐步放入背包,利用界限函数预估价值,提高解题效率。在无法继续放置物品时,通过回溯找到新的解决方案,最终找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

曾经研究过一个简单的N皇后问题,对回溯法也有了个模糊的认识,大致理解就是:先一直做某件事,当完毕某个条件时或者是触犯某个条件时。再返回到近期的一个类似还原点的地方。

在用回溯法求解0-1背包问题的时候。主要遇到三个相对难解决的问题:1。什么是界限函数;2,什么时候用它;3,回溯到哪儿。

什么是界限函数?

例如以下图:

当我们身在一棵搜索空间树中,站在一个K点举棋不定的时候。我们能够用它估算假设我们继续向下走,我们走完本段路会获得的总价值。

假设我们如今有一个最大解,当我用界限函数算出一个价值后和我当前的最大解比較。假设能获得更大利益。我们选择继续向下走,假设不能。果断放弃。

从下图中的伪代码能够看出,我们计算后半段最大价值的时候。使用的还是一个贪心算法。尽管切割的情况是不被同意的,可是我们能够用这个结果来进行估算。

61c3959e6350f328511ad81d897a6b80.png

回溯法得到的搜索空间树:

fd1a4a15a6cc8e4b2176d6b39aae90a1.png

什么时候使用界限函数?

数学一点儿的说法是:当X[i]=0时。

通俗一点说:当进入右结点的时候。

怎样回溯的问题?

向上回溯到第一个不是0的结点(而且这个结点不是顶点)。

求解思路

如上图搜索树。在建立搜索树之前,我将全部的物品依照V/W(价值重量比)从大到小排序。然后从第一个開始。依次向背包(背包大小110)中放入,放到第6个的时候,这

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值