YOLOv8使用Python文件操作

习惯了YOLOv5使用Python文件操作,用不惯YOLOv8删除了Python文件操作。
手搓一下

from ultralytics import YOLO

if __name__ == '__main__':

    #设置运行模式
    mode = "deploy"

    if mode == "train":
        #项目命名
        projectname='YOLOv8-small'

        # 加载一个模型
        model = YOLO('yolov8s-P2.yaml')  # 从YAML建立一个新模型
        model = YOLO('yolov8s.pt')  # 加载预训练模型(推荐用于训练)

        # 训练模型
        model.train(data="F://datasets//rebar//rebar.yaml", epochs=10, imgsz=640, name='F://Llandudno//train//'+projectname)  # train the model
        metrics = model.val(name='F://Llandudno//val//'+projectname)  # evaluate model performance on the validation set
        #results = model("https://ultralytics.com/images/bus.jpg")  # 使用刚训练好图片进行预测
        #path = model.export(format="onnx")  # 刚训练好的模型导出格式

    elif mode == "val":
        # 项目命名
        projectname = 'YOLOv8s'

        # 加载模型
        #model = YOLO('yolov8.pt')  # 加载官方模型
        model = YOLO('E://PycharmProjects//ultralytics-main//runs//detect//coc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值