申明:资料来源参考文献
参考文献:
小白也能看懂的 ROC 曲线详解! (qq.com)
ROC曲线 AUC (Area Under Curve) - 知乎 (zhihu.com)
Precision-Recall (PR) 曲线-在信息检索重要性 - 知乎 (zhihu.com)
深度学习,误检率,漏检率计算_漏检率和误检率公式-CSDN博客
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
y_true = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
y_pred = [1, 1, 0, 1, 1, 0, 0, 0, 0, 0]
print("acc:", accuracy_score(y_true, y_pred))
print("p:", precision_score(y_true, y_pred))
print("r:", recall_score(y_true, y_pred))
print("f1:", f1_score(y_true, y_pred))
输出结果为:
acc: 0.7
p: 0.5
r: 0.6666666666666666</