T5(Text-to-Text Transfer Transformer)是一种强大的自然语言处理模型,其架构基于标准的 Transformer 编码器-解码器结构。T5 的核心理念是将所有 NLP 任务统一为文本到文本的转换问题,无论分类、翻译还是问答等任务,输入和输出都表示为文本序列。
Encoder 部分处理输入序列,通过多个自注意力层和前馈层,将输入文本转化为一组隐藏表示。在 Encoder 中,T5 使用双向自注意力机制,允许模型考虑输入序列中的所有位置信息,提高对上下文的理解能力。
Decoder 部分生成输出序列,使用掩码自注意力,确保在生成过程中只能看到已生成的 tokens,防止信息泄露。Decoder 中的交叉注意力层允许模型在生成输出时关注 Encoder 的输出,实现输入和输出之间的信息流动。
T5 在输入文本前添加任务特定的前缀,如“translate English to German:”等,使单一模型能处理多种 NLP 任务。T5 使用大规模无标签文本数据进行预训练,学习通用的语言表示,然后针对特定任务进行微调,提高模型在特定领域的表现。
T5 能够同时学习多个 NLP 任务,提高了模型的通用性和迁移学习能力。它提供了多个规模的版本,以适应不同的计算资源和应用需求。在输出端,T5 使用自回归解码,逐个生成目标序列的 tokens。
T5 架构的这些特点使其成为一个灵活、强大的 NLP 模型,能够高效处理各种文本任务,并在多个基准测试中取得了优异的成绩。例如,在文本摘要、机器翻译等领域都有广泛的应用。T5 团队着重于设计一个标准的输入格式来获取文本输出,不想尝试从原始 Transformer 衍生出新架构,如像 BERT 的只有编码器或像 GPT 只有解码器。T5 使用的就是原始的 Transformer 架构,但通过统一的文本到文本格式,为广泛的 NLP 任务提供了一种高效的解决方案。
T5 的 Encoder 部分如何处理输入序列
T5(Text-to-Text Transfer Transformer)的编码器部分采用了标准的 Transformer 架构中的 Encoder。首先,输入序列进入编码器后,通过多个