基于深度学习立体匹配中的‘Cost Volume‘

本文整理了关于深度学习立体匹配中的Cost Volume相关资料,包括多个cost volume的介绍及《Cascade Cost Volume》和《Pyramid Stereo Matching Network》两篇文献,并通过PSMNet实例展示左右特征图拼接成cost volume的过程,解释了为何cost volume需要shift操作以形成D维度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 最近太忙,我把参考资料和相关文献给大家整理一下,以及代码演示,print出来让大家看懂。一起进步!
    cost volume1
    cost volume2
    cost volume3
    cost volume4
    cost volume 5

  • 《Cascade Cost Volume for High-Resolution Multi-View Stereo
    and Stereo Matching》
    在这里插入图片描述
    在这里插入图片描述

  • 《Pyramid Stereo Matching Network》
    在这里插入图片描述

  • 我把PSMNet中 左右特征图的Tesnsor和最后合并的cost volume的size 都打印出来方便大家看,这里PSMNet的处理方式就是按列拼接。

load PSMNet
Number of model parameters: 5224768 
CNN-out torch.Size([1, 128, 96, 312])
output_branch1-before torch.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值