
numpy基础
我喜欢你是寂静de
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
datawhale_Day4_task09_线性代数
矩阵和向量积 numpy.dot(a, b[, out])计算两个矩阵的乘积,如果是一维数组则是它们的内积。 矩阵特征值与特征向量 numpy.linalg.eig(a) 计算方阵的特征值和特征向量。 numpy.linalg.eigvals(a) 计算方阵的特征值。 奇异值分解 u, s, v = numpy.linalg.svd(a, full_matrices=True, compute_uv=True, hermitian=False)奇异值分解 QR分解 q,r = numpy.linalg.qr原创 2020-11-29 23:45:43 · 152 阅读 · 0 评论 -
datawhale_Day3_task08_统计相关_补卡
数据次序的统计 计算最小值 numpy.amin(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])Return the minimum of an array or minimum along an axis. 计算最大值 numpy.amax(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, wh原创 2020-11-28 22:49:13 · 124 阅读 · 0 评论 -
datawhale_Day2_task02_随机抽样
这两天太忙,待重新学习 随机抽样 二项分布 import numpy as np import matplotlib.pyplot as plt from scipy import stats np.random.seed(20200605) n = 9# 做某件事情的次数 p = 0.1# 做某件事情成功的概率 size = 50000 x = np.random.binomial(n, p, size) '''或者使用binom.rvs #使用binom.rvs(n, p, size=1)函数模拟一个原创 2020-11-25 23:16:03 · 109 阅读 · 0 评论 -
datawhale_Day2_task01_数据类型及数组创建
常量 numpy.nan numpy.inf numpy.inf numpy.pi numpy.e 列表/数组的创建 数组是一种特殊变量,能够一次包含多个值,数组可以在单个名称下保存多个值,您可以通过引用索引号来访问这些值。 (1)创建列表 中括号! number = [1,2,3,4,‘罗思洋’]:列表中可以包含整形、字符串、浮点型数据,还可以包含另一个列表。 (2)列表中添加元素 (3)从列表中获取元素 (4)列表反转 (5)列表拼接与重复 (6)元素是否存在于列表中的判断 (7)其余操作原创 2020-11-24 21:04:37 · 146 阅读 · 0 评论 -
datawhale_Day1_task06_输入输出
numpy二进制文件 save() : savez() :输入压缩文件.npz格式,也可将多个数组保存到一个文件 load() o import numpy as np outfile = r'.\test.npy' #r表示非转义 np.random.seed(20200619) x = np.random.uniform(0, 1, [3, 5]) np.save(outfile, x) np.set_printoptions(precision=3) y = np.load(outfile) pri原创 2020-11-23 22:26:01 · 141 阅读 · 0 评论