datawhale_Day4_task09_线性代数

本文介绍了如何使用numpy进行矩阵乘法、特征值与特征向量计算、奇异值分解、QR分解、矩阵范数、行列式、秩、迹以及逆矩阵和线性方程组求解。深入理解了这些基本操作在信息技术中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵和向量积

numpy.dot(a, b[, out])计算两个矩阵的乘积,如果是一维数组则是它们的内积。

矩阵特征值与特征向量

numpy.linalg.eig(a) 计算方阵的特征值和特征向量。
numpy.linalg.eigvals(a) 计算方阵的特征值。

奇异值分解

u, s, v = numpy.linalg.svd(a, full_matrices=True, compute_uv=True, hermitian=False)奇异值分解

QR分解

q,r = numpy.linalg.qr(a, mode=‘reduced’)计算矩阵a的QR分解。

Cholesky分解

矩阵的范数

numpy.linalg.norm(x, ord=None, axis=None, keepdims=False) 计算向量或者矩阵的范数。

方阵的行列式

numpy.linalg.det(a) 计算行列式。

矩阵的秩

numpy.linalg.matrix_rank(M, tol=None, hermitian=False) 返回矩阵的秩

矩阵的迹

numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None) 方阵的迹就是主对角元素之和

逆矩阵(inverse matrix)

numpy.linalg.inv(a) 计算矩阵a的逆矩阵(矩阵可逆的充要条件:det(a) != 0,或者a满秩)。

求解线性方程组

numpy.linalg.solve(a, b) 求解线性方程组或矩阵方程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值